Настольная книга начинающего авто-PRщика | Eventum Premo

Настольная книга начинающего авто-PRщика

Содержание


Типы двигателей

История двигателестроения

Расположение двигателей –передний задний приводы

Полный привод

Что такое турбонаддув

Турботаймер

Коробки передач

Типы кузовов

Подвеска

Типы тормозов

ABS+EBD

EBA

Система курсовой устойчивости

Подушки безопасности

Ксеноновые фары

Датчики давления в шинах

Круиз-контроль

Автосигнализации

 

Типы двигателей

 

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.
 

Типы двигателей.


Двигатель — устройство, преобразующее энергию (например, сгорания топлива) в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

впуск воздуха или его смеси с топливом;
сжатие рабочей смеси,
рабочий ход при сгорании рабочей смеси;
выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — "тяговиты на низах").

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.
Рядный двигатель — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров. Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.
V-образный двигатель — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.
Оппозитный двигатель имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.
VR-двигатель обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.
W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала или как бы две VR-компоновки. Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Конструктивные параметры двигателей.

Любой двигатель характеризуется следующими конструктивно заданными параметрами, практически неизменными в процессе эксплуатации автомобиля.

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.
Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.
Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.
Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.
Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

Показатели двигателей


Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.
Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:

рабочего объема. Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
давления горящих газов в цилиндрах, которое ограничено детонацией или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент). Двигатели большей мощности производители получают увеличением:

рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов; давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо - или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

 

Характеристики двигателей


При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п.

Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя, определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя. Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе.

Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике. Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении

 

История двигателестроения: рядные, V-образные, оппозитные


В начале прошлого века мощные автомобили можно было отличить по размерам капота. Так под капотом этого Duesenberg J скрывается рядный 8-цилиндровый двигатель длиной 1,2 м, развивающий 265 л. с. (рабочий объем 6,9 л)

Сегодня мощные моторы занимают гораздо меньше места. На фото 16-цилиндровый W-образный двигатель мощностью 1001 л. с. (рабочий объем 8,0 л), устанавливаемый на Bugatti Veyron

А) Рядная схема. Такая схема используется при небольшом количестве цилиндров (от двух до шести). Главным преимуществом является то, что моторы такого типа легче всего поддаются уравновешиванию. Недостаток – внушительная длина

Б) V-образная схема. Такая компоновка позволяет значительно сократить длину мотора, но при этом увеличивает его ширину. Наиболее распространенные V6 и V8

 


 


 


 


 


 


 


 


 


 

В) Оппозитный двигатель – V-образный мотор с углом развала 180 градусов. Главным преимуществом является наименьшая высота и, как следствие, снижение центра тяжести автомобиля. Недостаток – неравномерный износ. В основном встречаются 4- и 6-цилиндровые дви

 


 


 


 


 


 


Г) VR-образная схема. Моторы с небольшим углом развала (около 15 градусов). Такой угол позволил установить оба ряда цилиндров в одном блоке цилиндров, что позволило уменьшить не только длину, но и ширину двигателя. Главный недостаток – высокая тепловая на

Д), Е) W-образная схема. Существует два варианта компоновки – три ряда цилиндров с большим углом развала (д) и совмещение двух VR-образных схем (е). В настоящее время выпускаются W8 и W12

 

Сегодня встретить в описании автомобильных двигателей можно не только величины мощности и крутящего момента, но и приставки: рядные, V-образные и оппозитные, характеризующие расположение цилиндров. Несмотря на то что каждая из этих схем – эволюционный шаг в двигателестроении, ни от одной из них до сих пор еще не отказались. А все потому, что все они имеют свои плюсы и минусы, на которые также необходимо обращать  внимание при выборе транспортного средства.

Первым запатентованным двигателем внутреннего сгорания стал мотор, разработанный в 1883 году Готлибом Даймлером и Вильгельмом Майбахом. Это был одноцилиндровый двигатель, развивающий всего 1,1 л. с. Разумеется, мощностью таких моторов довольствоваться не приходилось. Ведь автомобили должны были заменить конные экипажи, перенимая на себя все их задачи: перевозка людей, грузов и так далее.

Поэтому для увеличения силы двигателей, стали увеличивать рабочий объем цилиндра. Но, как оказалось, всему есть предел. Вместе с цилиндром необходимо было увеличивать поршень и шатун, на эти детали возрастали нагрузки, и их также необходимо было учитывать при проектировании. Кроме того, воспламенение топливовоздушной смеси больших объемов в таком двигателе происходит с определенной паузой, из-за чего он работает неравномерно. В таком случае необходимо устанавливать тяжелый балансир, и тогда конструкция становится еще более тяжелой и, чтобы приводить ее в движение, необходима дополнительная энергия.  В результате одноцилиндровые двигатели становились слишком массивными, а масса увеличивалась не пропорционально мощности. Это приводило к тому, что заставить двигатель работать на высоких оборотах становилось невозможным, а, как известно, чем ниже скорость вращения коленчатого вала, тем меньше его мощность.

В скором времени решили, что коленчатый вал может перемещать не только один поршень, и к одному цилиндру прибавились еще несколько. Цилиндры разместили в ряд (так проще всего). Сначала появились 2-цилиндровые двигатели, а в 1890 году появился первый 4-цилиндровый двигатель. Мощность этого мотора уже достигала 5 л. с. при 620 об/мин, но как по нынешним меркам, так и по меркам того времени этого было не достаточно, чтобы перемещать тяжелую технику. Поэтому создавались новые двигатели, число цилиндров которых достигало шести, восьми и даже двенадцати. И вот тут производители столкнулись со следующей проблемой. Таким двигателям требовалось большое количество свободного места под капотом. Кроме того, эти моторы за счет свого веса утяжеляли автомобиль, тем самым ухудшая его устойчивость и управляемость. Мысли инженеров направились на создание более компактного двигателя... К слову, сегодня рядные моторы можно встретить максимум с шестью  цилиндрами. В основном по такой схеме сегодня строятся 4-цилилндровые двигатели, так как наиболее просты при производстве.


 

На самом деле идея компактного двигателя была запатентована еще до того, как появились многоцилиндровые монстры. Такой двигатель был создан в 1889 году. Он имел два цилиндра с углом развала  17 градусов и развивал 1,6 л. с. при  900 об/мин. V-образная компоновка, по сути, представляла из себя два двигателя, расположенных рядом друг с другом и приводящих в движение один общий коленчатый вал. Такая компоновка позволила сократить размеры мотора в длину почти вдвое.

В автомобилестроении первый V-образный мотор появился в 1905 году. Это был авиационный двигатель, построенный французским изобретателем Леоном Левавассером. Вначале моторы, построенные по такой схеме, устанавливали на грузовики и автобусы, а со временем они стали встречаться и под капотами легковых автомобилей. И все же, несмотря на многие положительные качества такой схемы, она не вытеснила рядную. Ведь там где есть  плюсы, всегда есть и минусы. Главным образом это более сложная конструкция (два газораспределительных механизма вместо одного), и, следовательно, трудоемкость производства и дальнейшего ремонта. Кроме того, габаритные размеры хоть и уменьшились в длину, но моторы при этом "разрослись" в ширину.

Одним из типов V-образных моторов, который удостоен отдельного внимания, является оппозитный двигатель. По сути, этот двигатель является V-образным с углом развала цилиндров 180 градусов.  В основном такие моторы нашли широкое применение на мотоциклах. Поперечное (направлению движения) размещение двигателя улучшало охлаждение цилиндров набегающим потоком воздуха. Однако и в автомобильной промышленности ему также нашлось место. С 1938 по 2003 года оппозитники устанавливали на Volkswagen Beetle, все по той же причине лучшего охлаждения (мотор имел воздушную систему охлаждения).

В 60-е годы производители усердно занялись разработкой переднеприводных автомобилей. Машины с такой схемой по сравнению с приводом на заднюю ось имели преимущества на скользком покрытии, а также были проще и дешевле в изготовлении. Но как оказалось не все так просто. По причине тяжести двигателей переднеприводные автомобили того времени не могли похвастаться хорошей управляемостью и равновесием в поворотах. Конструкторы стали снижать центр тяжести двигателей, в основном этого добивались, "укладывая моторы на бок".  И пока одни автомобильные компании экспериментировали с расположением мотора, японские инженеры из Subaru в 1966 году представили свой первый переднеприводный автомобиль Subaru-1000, на котором был установлен оппозитный двигатель, размещенный вдоль оси автомобиля. За счет горизонтального расположения цилиндров мотора, значительно понизился центр тяжести автомобиля, улучшив тем самым устойчивость и управляемость машины.

Тем не менее такие моторы не нашли массового применения. Обусловлено это рядом минусов:  неравномерный износ цилиндров (из-за точечного распределения нагрузок сечение цилиндра со временем становится эллипсным), большой расход масла и плохая вентиляция картера. Оппозитные двигатели сегодня можно встретить на автомобилях марки Subaru и Porsche, для которых на первом месте находится управляемость.


 


 


 

Еще к одному из типов расположения цилиндров можно отнести рядно-смещенный двигатель, обозначаемый индексом VR. Этот мотор является комбинацией V-образного и рядного двигателей. Поршни перемещаются под углом 15 градусов, что позволяет расположить их в одном блоке цилиндров. Создавая этот двигатель, конструкторы пытались максимально использовать плюсы V-образного и рядного двигателя: небольшие габаритные данные (как в длину, так и в ширину), простота изготовления. Но создать идеальный мотор задача оказалась не из простых. Эти двигатели обладают высокой тепловой напряженностью. Тонкие стенки между рядами цилиндров не позволяют сделать достаточное количество каналов для охлаждающей жидкости, вследствие чего эти моторы хуже противостоят перегрузкам.


 


 


 


 


 


 


 


 


 


 


 

Погоня за мощностью привела к тому, что на свет появились моторы, построенные по схеме W. Это, по сути, два VR двигателя, угол между которыми составляет 72 градуса или три рядных. Главный недостаток таких моторов заключается в том, что на коленчатом валу находится в два раза больше шатунов, чем на V-образном, и в четыре раза! больше, чем на рядном. Шатуны изготавливаются тонкими, а так как эти детали являются одними из наиболее нагруженных в двигателе, то в результате на больших оборотах они начинают изгибаться. Такие моторы, созданы не для массового использования. Их можно встретить лишь на спортивных автомобилях.

 

Расположение двигателей +и- переднего и заднего приводов.

Задний привод

 

Основные компоновки с приводом на задние колёса: переднемоторная…

…среднемоторная…

…и заднемоторная.

За́дний при́вод — конструкция трансмиссии автомобиля, когда крутящий момент, создаваемый двигателем, передается на задние колеса. Реализовано это может быть при самом различном взаимном расположении двигателя и агрегатов трансмиссии (см. ряд иллюстрация слева).

Для российских и многих американских заднеприводных автомобилей характерной является жёсткая балка заднего моста. На европейских и японских моделях начиная с конца семидесятых годов как правило используются либо облегчённая зависимая задняя подвеска типа «Де-Дион», либо независимая — с качающимися полуосями на более старых конструкциях, на продольных (или диагональных) рычагах и различные варианты многорычажных, что вынуждает использовать в ней полуоси с шарнирами, — в настоящее время как правило используются шарниры равных угловых скоростей, аналогичные используемым на переднеприводных автомобилях.

Для водителя средней квалификации и неэкстремальных условий эксплуатации, передне- и заднеприводный автомобили одного технологического уровня примерно эквивалентны с точки зрения управляемости и безопасности; преимущество переднего привода проявляется обычно лишь на скользких покрытиях — в частности, зимой. И передний, и задний привод уступают в этом отношении легковому полному приводу.

В некоторых дисциплинах автоспорта (например, в шоссейно-кольцевых гонках) задний привод имеет преимущество перед передним, вытекающее из преимуществ заднего привода перед полным и передним на покрытиях с высоким коэффициентом сцепления (сухой асфальт). В то же время в Ралли с присущими этому виду автоспорта скользкими грунтовыми, ледяными и заснеженными трассами с низким коэффициентом сцепления преимущество уже у полного и переднего привода. На заднем приводе при заносе достаточно сбросить газ, чтобы вернуть автомобиль на траекторию.

Задний привод используется почти повсеместно на мотоциклах.

Плюсы заднего привода

  1. Динамическая загрузка задней (ведущей) оси: при нажатии на газ, вес машины переносится на заднюю часть, тем самым нагружая задние колеса и разгружая передние, в итоге, вся машина имеет лучшее сцепление с дорожным покрытием, за счёт этого ведущие колёса меньше буксуют. Как результат — хорошая проходимость (за исключением заснеженных дорог, где лучше себя показывает передний привод) и динамика разгона (точнее, более эффективное использование мощности двигателя при разгоне), хорошая способность уверенно преодолевать подъёмы

  2. Занос на заднеприводном автомобиле более предсказуем и легко устраняется сбрасыванием газа и поворотом руля в сторону заноса. Водитель средней квалификации склонен в таких ситуациях инстинктивно именно бросать газ, а не нажимать. При переднем же приводе, напротив, для выхода из заноса приходится прибавить усилие на педали газа, а сбрасывание приведет к ещё большей потери управляемости

  3. На руль не передается реактивных моментов при разгоне.

  4. Меньший радиус разворота, так как углы поворота передних колёс не ограничены шарнирами равных угловых скоростей;

  5. Технологически, задний привод зачастую проще по сравнению с передним; в частности, не требует обязательного использования относительно сложных и дорогостоящих шарниров равных угловых скоростей, даже в случае независимой задней подвески; однако, себестоимость очень сильно зависит от конкретной компоновки, что рассмотрено ниже, и конкретной реализации;

Минусы заднего привода

  1. На заднеприводном автомобиле повёрнутые передние колеса создают эффект торможения, а толкающие задние — избыточную толкающую силу, поэтому заднеприводные автомобили тяготеют к заносу (скольжению задней оси в повороте), что называется избыточной поворачиваемостью.

  2. Недостаточно хорошая управляемость на скользких покрытиях (лёд, грунт).

Этот недостаток отчасти помогают решить современные системы контроля над сцеплением и стабилизации автомобиля. Также, хорошо помогают справляться с этой проблемой и последние разработки в области автомобильной резины.

Остальные преимущества и недостатки в исключительно большой степени зависят от конкретной компоновки автомобиля, варианты которой описаны ниже.

Компоновки автомобиля с задним приводом

С передним расположением двигателя

Переднемоторная, заднеприводная компоновка

 

Переднемоторная, заднеприводная компоновка

Основная статья: Переднемоторная, заднеприводная компоновка

См. также категорию: Автомобили с переднемоторной, заднеприводной компоновкой

Известна под названием «классическая компоновка». Двигатель у таких автомобилей находится в передней части автомобиля, с центром масс перед или над передней осью, и передаёт крутящий момент на задние колёса.

Для расположения коробки передач здесь есть два варианта:

  • КПП вместе со сцеплением сблокирована с двигателем и связана с задним мостом при помощи карданного вала — это наиболее распространённая на массовых моделях схема;

  • КПП, часто вместе со сцеплением, расположена отдельно от двигателя у заднего моста и сблокирована с главной передачей (это конструктивное решение называется «трэнсэксл»), а карданный вал, либо заменяющий его вал без шарниров внутри трансмиссионной трубы, вращается всегда со скоростью коленчатого вала двигателя. Часто при такой схеме двигатель связан с коробкой передач, сблокированной с редуктором заднего моста, полой трансмиссионной трубой, внутри которой расположен тонкий вал без шарниров, заменяющий карданный вал; часто эта трансмиссионная труба по совместительству является и силовой основой кузова автомобиля, то есть, рамой — в данном случае, разновидностью хребтовой рамы. Так как картер редуктора заднего моста при такой схеме неподвижен, требуется независимая подвеска задних колёс. Преимущество этой компоновки — лучшая развесовка по осям, особенно при размещении спереди тяжёлого двигателя, поэтому её применяют в основном на спортивных автомобилях, например, Chevrolet Corvette последних выпусков.

Задний привод в сочетании с передним расположением двигателя часто называют «классической компоновкой», потому что эта компоновка автомобиля была наиболее распространена с начала XX века и до конца семидесятых годов.

Плюсы

  1. Примерно равное распределение веса автомобиля по осям; как следствие — лучше управляемость на сухом покрытии и равномерный износ шин;

  2. Нейтральная или небольшая недостаточная поворачиваемость, что обеспечивает стабильную курсовую устойчивость;

  3. Двигатель расположен перед водителем; это облегчает контроль за ним и управление, обеспечивет простую реализацию отопления салона;

  4. Благодаря установке силового агрегата на мягких демпфирующих опорах, значительно уменьшается уровень вибрации в салоне по сравнению с передним приводом, особенно на моделях высоких классов;

  5. По сравнению с переднеприводными схемами и заднемоторными автомобилями, компоновка силового агрегата и трансмиссии намного менее плотная, что облегчает проектирование, изготовление и обслуживание автомобиля, позволяет использовать очень различные силовые агрегаты на одной и той же модели;

  6. Продольное расположение двигателя, как следствие, — возможность размещение двигателей, непригодных для поперечного расположения из-за своей длины — например, рядных шестицилиндровых; более простая конструкция передней подвески;

  7. Как правило, при сравнимом технологическом уровне автомобиль такой компоновки долговечнее; это относиться в первую очередь к автомобилям с жёсткой балкой заднего моста; но и на автомобилях с независимой задней подвеской шарниры полуосей как правило имеют больший ресурс по сравнению с установленными на передних полуосях перднеприводного автомобиля, так как задние колёса как правило не поворачиваются, и условия работы шарниров более щадящие;

Минусы

Главный минус компоновки — наличие карданного вала; из этого следует:

  • Увеличение массы и себестоимости автомобиля;

  • Необходимость наличия в полу кузова специального тоннеля, уменьшающего объём пассажирского салона; Повышение уровня шумности и вибраций;

  • Некоторое затруднение при создании грузопассажирских модификаций из-за отсутствия ровного пола;

Заднеприводный, переднемоторный автомобиль получается одним из наиболее длинных по сравнению с другими компоновочными схемами, как следствие — наибольшая масса и, обычно, себестоимость; особенно эти недостатки чувствительны для микролитражного автомобиля, поэтому именно на них «классическая» компоновка вышла из употребления ещё в пятидесятые, и была заменена сначала на заднемоторную, а впоследствии — на переднеприводную. В настоящее время, по «классической» компоновке строят преимущественно относительно большие автомобили высоких классов.

 

Передняя среднемоторная, заднеприводная компоновка

 

Передняя среднемоторная, заднеприводная компоновка

Основная статья: Передняя среднемоторная, заднеприводная компоновка

См. также категорию: Автомобили с передней среднемоторной, заднеприводной компоновкой

Как правило, в самостоятельный тип её не выделяют, рассматривая совместно с «классической» компоновкой.

То же, что и предыдущий вариант, но с двигателем, расположенным в пределах колёсной базы автомобиля. Такая схема применялась преимущественно до конца тридцатых годов, до распространения независимых передних подвесок; впоследствии использовалась достаточно редко.

Плюсы и минусы в этом случае те же, но перемещение двигателя назад смещает и пассажирский салон, поэтому размещение пассажиров и грузов при такой компоновке не рационально, в частности, заднее сидение как правило располагалось над кожухами задних колёс, а отдельный багажник отсутствовал.

Иногда на современных двухместных спортивных автомобилях с тяжёлыми расположенными спереди двигателями их также сдвигают назад для лучшей развесовки, примеры — Mazda RX-7, Dodge Viper, Lotus Seven.

 

С расположением двигателя у задней оси

Задняя среднемоторная, заднеприводная компоновка

 

Задняя среднемоторная, заднеприводная компоновка

Основная статья: Задняя среднемоторная, заднеприводная компоновка

См. также категорию: Автомобили с задней среднемоторной, заднеприводной компоновкой

Также называется «компоновкой с центральным расположением двигателя». Из легковых автомобилей, применяется исключительно на спортивных моделях. Характерный пример такой компоновки — Porsche Boxster с шестицилиндровым оппозитным двигателем.

Расположение силового агрегата примерно в центре масс автомобиля даёт оптимальную развесовку при любой массе двигателя и хорошую динамическую загрузку ведущих колёс, что существенно улучшает их сцепление с асфальтом, особенно на скользком покрытии (хотя и в меньшей степени, чем в случае заднемоторной компоновки, о ней см. ниже).

Однако, такое его размещение сильно затрудняет компоновку пассажирского салона (почти всегда такие автомобили делают двухместными), а также доступ к силовому агрегату и его охлаждение, что делает эту компоновку непригодной для легковых автомобилей общего назначения.

Управляемость среднемоторных автомобилей лучше, чем заднемоторных, и для них характерны весьма высокие предельные скорости вхождения в поворот; но очень малое плечо момента инерции вокруг вертикальной оси из-за концентрации массы автомобиля в пределах колёсной базы приводит к плохой курсовой устойчивости (иными словами, такие автомобили очень легко сбить с траектории прямолинейного движения, так как момент инерции, противодействующий этому, у них весьма мал), а также очень резкому поведению в поворотах, что требует большого мастерства от водителя[9].

На автобусах среднемоторная компоновка широко распространена, хорошо известный пример — автобусы Ikarus, у которых рядный шестицилиндровый дизель RABA MAN размещался под полом пассажирского салона на боку.

Кроме того, среднемоторная компоновка использовалась на многих ранних автомобилях конца XIX — начала XX века, в частности, первых автомобилях Бенца и Даймлера. Двигатель располагался у них под высоким сидением водителя и приводил задние колёса через при помощи цепи.


 

Заднемоторная, заднеприводная компоновка

Заднемоторная, заднеприводная компоновка

Основная статья: Заднемоторная, заднеприводная компоновка

См. также категорию: Автомобили с заднемоторной, заднеприводной компоновкой

В автомобилях, спроектированных по заднемоторной, заднеприводной компоновке, двигатель, трансмиссия и ведущий мост находятся в задней части автомобиля. В отличие от среднемоторной компоновки центр масс двигателя находится за задней осью (не путать с общим центром масс всего автомобиля — если бы он располагался позади задней оси, было бы невозможно удержать на земле передние колёса).

При такой компоновке силовой агрегат может располагаться как продольно, так и поперечно. Тем не менее, на абсолютном большинстве заднемоторных легковых автомобилей силовой агрегат расположен продольно, а поперечное его расположение втречается в основном на автобусах. Из легковых автомобилей поперечно расположенный мотор имели западногерманские малолитражки фирмы NSU выпуска шестидесятых — начала семидесятых годов.

Такая компоновка массово применялась на европейских малолитражках тридцатых — шестидесятых годов — Volkswagen Type 1 («Жук») и всех моделях на его базе, Škoda 1000MB, «Запорожцах», Renault Caravelle, BMW 700 и других, а также — на спортивных автомобилях (DeLorean DMC-12, Porsche 911, и иногих других. В редчайших случаях её применяли на автомобилях среднего класса (Chevrolet Corvair, Volkswagen Type 4), а также представительских или большого класса (заднеприводные «Татры» от Т77 до Т613 и Tucker Torpedo).

На автомобиле Tatra T613 использовалась уникальная компоновка с расположением двигателя V8 над задней осью, эта схема как правило тоже считается разновидностью заднемоторной компоновки.

В настоящее время, заднемоторные легковые автомобили практически не строятся, так как считается, что при современных скоростях движения она не удовлетворяет требованиям безопасности, устойчивости и управляемости. Это в целом верно для водителя, привыкшего к переднемоторным автомобилям, так как их управляемость коренным образом отличается от таковой при заднем расположении двигателя.

Сохранилась эта компоновка только на малогабаритных городских автомобилях с невысокой максимальной скоростью типа Tata Nano или Smart, или традиционных спортивных моделях, вроде Porsche 911[4], на которых для улучшения управляемости до приемлемого уровня используются сложные электронные устройства.

Тем не менее, Volkswagen объявил о намерении к 2010 году запустить в серию недорогой компактный 3,5-метровый заднемоторный городской автомобиль Volkswagen City Expert с трёхцилиндровым двигателем и невысокой максимальной скоростью.

Кроме того, эта схема широко используется на больших автобусах. По отношению к использованию на них эта схема имеет то преимущество, что расположение двигателя сзади весьма удобно с точки зрения удоства организации пассажирского салона, в частности, позволяет опустить пол, что необходимо городским автобусам.

В отличие от легкового автомобиля, при равномерно заполненном пассажирами салоне развесовка автобуса с задним расположением силового агрегата оказывается более благоприятной. Кроме того, скорости движения автобусов существенно ниже, чем у легковых автомобилей, а требования к управляемости не столь жёстки.

Однако, из-за использования на автобусах исключительно неразрезных задних мостов с приводом карданным валом эта схема куонструктивно пригодна лишь для больших автобусов, с длиной не менее 8,5 метров.[4]

Плюсы

  1. На ведущую ось приходится до 60 % (и даже более) массы автомобиля, плюс динамическая загрузка при разгоне; это предопределяет хорошую динамику разгона и очень хорошие возможности разгона при недостаточном сцеплении задних ведущих колёс с дорогой — на мокром покрытии, в гололёд и на подъёме, что сделало логичным выбор такой схемы для спортивных автомобилей, а так же, в сочетании с гладким днищем, — очень хорошую для монопривода проходимость;

  2. За счёт отсутствия карданного вала и объединения силового агрегата и трансмиссии в компактный блок, при том же размере салона масса заднемоторного автомобиля на 5…10 % меньше, а себестоимость — на 7…12 % ниже, чем при «классической» компоновке (и ниже, чем при переднеприводной, благодаря более просто конструкции, в частности, отсутствию шарниров равных угловых скоростей). Это предопределяло выбор такой схемы для недорогих микро- и малолитражных автомобилей;

  3. Из предыдущих пунктов следует возможность за счёт хорошего сцепления колёс с дорогой и общего облегчения конструкции установить двигатель меньшей мощности по сравнению с другими компоновками (особенно переднеприводной) без ухудшения потребительских качеств, что, опять же, особенно ценно для недорогих моделей;

  4. При сравнимых внешних габаритах, салон заднемоторного автомобиля будет просторнее по сравнению с автомобилем «классической» компоновки за счёт отсутствия туннеля в днище для карданного вала и трансмиссии, а по сравнению с переднеприводным — как правило, больше пространство для ног водителя и переднего пассажира;

  5. Силовой агрегат — трэнсэксл, состоящий из двигателя, сцепления, коробки передач, редуктора заднего моста и полуосей, получается одним из наиболее компактных и достаточно дёшев в производстве; силовой поток получается коротким, что предопределяет небольшие потери мощности в трансмиссии;

  6. Хороший доступ к двигателю относительно среднемоторной схемы;

  7. Меньшая шумность в салоне по сравнению с передним расположением двигателя благодаря удалённости от пассажиров и хорошей изоляции моторного отсека (повышенная шумность «Запорожцев» и других заднемоторных автомобилей с двигателями воздушного охлаждения связана с конструктивными особенностями их двигателей, а не компоновкой);

  8. Малое усилие на рулевом колесе благодаря малой загрузке передних колёс;

  9. Простая конструкция передней подвески; Оптимальное распределение тормозных сил;

  10. Высокий уровень пассивной безопасности при лобовом ударе благодаря большой деформируемой зоне впереди кузова (однако, некоторыми специалистами напротив отмечается худшая пассивная безопасность заднемоторных автомобилей, как раз в связи с отсутствием впереди двигателя);

Минусы

  1. Худшая управляемость по сравнению с другими схемами; на ведущую ось приходится до 60 % массы автомобиля, что приводит к «избыточной поворачиваемости», а также — плохой курсовой устойчивости и недостаточной эффективности рулевого управления из-за недостаточного сцепного усилия на передних колёсах, особенно на высоких скоростях и на дорогах с плохим коэффициентом сцепления; повышенная чувствительность к боковому ветру; частично компенсировать этот недостаток помогают такие меры, как: применение более короткого V-образного или оппозитного двигателя, поперечное расположение силового агрегата, смещение пассажирского салона вперёд, правильный выбор кинематики задней подвески, а также — повышение давления в шинах задних колёс с одновременным увеличением угла наклона шкворней передних колёс в продольной плоскости;

  2. Затруднённое охлаждение двигателя, усложнённое отопление салона; требуется мощный вентилятор принудительного охлаждения, потребляющий дополнительную мощность, соответственно — топливо; при выносе радиатора вперёд охлаждение двигателя улучшается, возникает возможность использовать более экономичный электровентилятор, но уменьшается и без того небольшой объём багажного отсека, к тому же, появляются длинные теплотрассы, проложенные через весь кузов, что увеличивает потери тепла;

  3. Большая длина приводов от рабочего места водителя к двигателю и трансмиссии;

  4. Трудности с расположением топливного бака в безопасной зоне (при расположении сзади повышается пожароопасность, при переднем возникает вероятность деформации при аварии);

  5. Большая нагрузка на опоры двигателя при трогании с места;

  6. Трудности с построением эффективной выхлопной системы и системы глушения шума двигателя, их настройки из-за малой доступной длины;

  7. Длинный задний свес, особенно при продольном расположении двигателя; Объём багажного отделения обычно меньше, чем при «классической» компоновке из-за больших ниш передних (поворотных) колёс и расположения деталей рулевого управления

  8. Крайне затруднено создание грузопассажирских модификаций;

  9. По сравнению с переднеприводным, при том же объёме салона длина кузова заднемоторного автомобиля расходуется нерационально из-за расположения багажного отсека спереди;

Три последних недостатка частично устраняются применением плоских оппозитных двигателей, что позволяет добавить второй багажник сзади над двигателем (Chevrolet Corvair), и даже строить модификации с кузовом «универсал» (Chevrolet Corvair, VW 411 E Variant) и «фургон» (Volkswagen Type 2), причём в этом случае автомобили имеют два багажных отделения с большим общим объёмом — спереди и сзади;

 

Передний привод


Переднеприводная схема является динамически устойчивой. Ведущие колеса, они же и управляемые, находятся впереди центра масс переднеприводного автомобиля, не толкая автомобиль, а увлекая его за собой. Это придает ему так называемую недостаточную поворачиваемость, то есть, стремление распрямлять траекторию, увеличивать радиус поворота при маневрировании. Поэтому, в отличие от заднего привода, такая схема не позволит автомобилю сорваться в занос, если повышать обороты двигателя при прямолинейном движении, или же проходить повороты, как говорят профессионалы, «под тягой». Данный эффект переднего привода и породил мнение о том, что он прощает ошибки, что «переднеприводники» более просты в управлении на скользких дорожных покрытиях,

 

Полный привод

 

Полный привод прочно утвердился в сознании большинства водителей как синоним высокой проходимости автомобиля.
Современные автомобили обладают большим запасом мощности, и на старте при резком нажатии на педаль газа сил сцепления одной пары колес с дорожным покрытием, как правило, не хватает. Ведущие колеса буксуют, проскальзывают, избыток тяги уходит вместе с дымом сгоревшей «резины». А распределение тягового усилия не на два, а на четыре колеса и возможность использовать весь вес машины в качестве сцепного уменьшают вероятность пробуксовки вдвое и гарантируют впечатляющее стартовое ускорение. К тому же полный привод обеспечивает лучшую управляемость и курсовую устойчивость автомобиля в движении, особенно на скользких дорогах, позволяет водителю увереннее и быстрее проходить повороты. Однако трансмиссия 4х4 требует введения в конструкцию новых узлов, что делает автомобиль более тяжелым, шумным и вибронагруженным. Усложнение конструкции умножает производственные издержки, что отражается на стоимости полноприводного автомобиля. В свою очередь, потребуют больших затрат обслуживание и ремонт такой машины в эксплуатации. А еще при прочих равных условиях автомобили 4х4 потребляют больше горючего, чем их аналоги с приводом на одну ось,- сказываются увеличение общего веса машины и механические потери в дополнительных агрегатах трансмиссии. Проблемы достаточно серьезные, и вплоть до начала 1980–х использование схемы с четырьмя ведущими колесами не на внедорожниках, где иначе никак нельзя, а на обычных легковых машинах считалось событием из ряда технических курьезов.
Но в 1980 году появилась Audi–Quattro. Этот факт имел как минимум два следствия. Audi, пребывавшая до этого на правах, образно говоря, падчерицы у компании «Volkswagen», превратилась в марку мирового уровня и гордость немецкого концерна. Мировая же автомобильная промышленность неожиданно получила мощный импульс для дальнейшего развития. Дело не в том, что форсированная версия Audi–Quattro стала родоначальницей нового поколения суперскоростных автомобилей для раллийных гонок. Появление шоссейной модификации Quattro, благосклонно принятой рядовыми покупателями, потребовало адекватных шагов от других производителей автомобилей, и модельные ряды даже семейных машин из разряда «ширпотреб» начали стремительно полниться версиями 4х4- и все они находили своих почитателей. Subaru и вовсе сделала полный привод фирменной «фишкой», и со временем полноприводными стали все автомобили, выпускаемые этой японской компанией.
Однако в чем заключался секрет Audi? Немецким инженерам удалось разработать легкую и компактную конструкцию, в которой на основе переднеприводной компоновки отбор крутящего момента к задним ведущим колесам осуществлялся непосредственно от встроенного в коробку передач межосевого дифференциала. Правда, этому дифференциалу требовалась блокировка, но внедрение самоблокирующихся вискомуфт и дифференциалов трения (вроде конструкции Торсена, использующей способность винтовых шестерен к самоторможению) сняло эту проблему. Легковые автомобили 4х4 освободились как от дополнительных рычагов механической блокировки, что их салоны отнюдь не украшало, так и от рывков, сопровождавших блокировку дифференциала, если она осуществлялась механическим способом. Вискомуфты, кстати, не только освободили автомобили от лишних рычагов и рывков, но и позволили плавно перераспределять крутящий момент между осями в зависимости от конкретной обстановки, в которой оказывается любое колесо автомобиля в каждый определенный момент времени. Впрочем, вискомуфты оказались не без «закидонов». С появлением ABS вискомуфты начали «конфликтовать» с этими системами, вмешиваясь в их работу и корректируя ее только в худшую сторону. Первым ABS начал внедрять Mercedes–Benz, ему первому и пришлось ломать голову над тем, как «утихомирить» вискомуфту. Благо к этому времени уже был создан межосевой дифференциал Фергюсона с автоматической блокировкой, управляемой электроникой. Внутри этого дифференциала располагалось многодисковое сцепление, включаемое, когда разность скоростей вращения колес достигала определенного значения. Команда на блокировку поступала от микропроцессора, который в своей работе использовал сигналы от трех датчиков скорости колес- тех же, что применялись в системе ABS. Автоматически блокируемый дифференциал позволил облегчить трогание автомобиля с места, прежде всего, на скользких дорогах, улучшить управляемость на высокой скорости при движении в поворотах и при этом нисколько не влиял на эффективность ABS, потому что отключался при любом нажатии на педаль тормоза.
«Audi» пошла своим путем, и в четвертой по счету версии Quattro использовался уже полный привод с межосевым дифференциалом Торсена и независимым подтормаживанием буксующего колеса. Однако на Audi–TT, как, впрочем, и на других автомобилях концерна «Volkswagen», оснащенных системой полного привода 4–Motion, появилась муфта Халдекс, в основе которой- многодисковое сцепление, управляемое электроникой. Нынче в пользу муфты Халдекс отказывается от вискомуфты и «Volvo». С 2000 года фирма BMW, применяющая колесную формулу 4х4 на некоторых модификациях своих автомобилей, сделала ставку на систему полного привода xDrive, не имеющую никаких блокировок. Управляет полным приводом BMW электроника, точнее- системы ABS, ASC+T, DSC и ADB–X. Важно то, что первые три системы используются на заднеприводных версиях BMW, то есть являются стандартными. По большому счету, потребовалось лишь расширить программное обеспечение этих систем, чтобы оно соответствовало полному приводу.
Роль первых скрипок в системном «квартете» играют DSC — Dynamic Stability Control, и ADB–X — Automatic Differential Brake (судя по второму техническому термину, дифференциал в системе 4х4 BMW все же есть, но на самом деле речь идет всего лишь об его имитации с помощью тормозов). От DSC поступают все команды, идущие тормозам, ADB–X распознает, когда колесо начинает проскальзывать, и притормаживает его, обеспечивая тем самым тот же эффект, что и блокировка дифференциала. Водитель узнает, что система достигла некоего критического режима в работе (иными словами, что колеса начинают терять сцепление с дорогой) и ADB–X вступила в действие, с помощью мигающего индикатора на приборной панели. Передоверив функции управления полным приводом электронике, компании BMW удалось добиться не только уменьшения веса и упрощения схемы трансмиссии, но и оптимизировать работу тормозной системы, где теперь каждое колесо получает строго дозированное тормозное усилие и не вмешивается в торможение «соседей», как это происходит в полном приводе с обычными блокировками. Инженеры компании Mercedes не стали идти по проторенной дорожке и изобрели свою трансмиссию с автоматически подключаемым полным приводом, которую назвали 4 MATIC. Принцип ее работы заключается в следующем: на сухом покрытии ведущими являлись задние колеса, а при их пробуксовке центральный компьютер через гидравлический привод включал многодисковое сцепление и перераспределял крутящий момент на передние колеса. Материал, из которого изготавливались фрикционные накладки дисков, не боится пробуксовки, а как раз благодаря пробуксовке и может работать применяемое в подобных схемах многодисковое сцепление. Электронная система через гидропривод изменяет степень прижимания дисков друг к другу, постепенно перебрасывая крутящий момент к оси, колеса которой обладают лучшим сцеплением с дорогой. Такой агрегат называется гидромеханической муфтой. На практике система 4 MATIC работала не хуже, но и не лучше полноприводных трансмиссий конкурентов, а ее дороговизна и сложная конструкция скорее была минусом, чем плюсом.
 Но, думается, последнее слово в совершенствовании систем 4х4, предназначенных не для увеличения проходимости автомобиля, а для обеспечения его все более высоких скоростных возможностей, еще не сказано.

Устройство и разновидности
Для начала выясним основные принципы работы полного привода. Пожалуй, самым главным узлом в нем является дифференциал. Для того чтобы обеспечить разную частоту вращения ведущих колес, применяется межколесный дифференциал, а приводных валов- межосевой. Дифференциалы можно классифицировать как симметричные и несимметричные, свободные и блокируемые. В симметричных крутящий момент распределяется между полуосями поровну, а в несимметричных неодинаково. В основном межколесный дифференциал симметричный, а вот межосевой бывает как симметричным, так и несимметричным. Свободный дифференциал не препятствует полуосям или приводным валам вращаться с разными угловыми скоростями, а в блокируемом дифференциале можно ограничить такую независимость.
Итак, для нормальной работы постоянного полного привода в трансмиссии должно быть два межколесных и один межосевой дифференциал.
Первые полноприводные автомобили оснащались достаточно простыми блокировками межосевого и заднего межколесного дифференциалов, которые можно было задействовать с места водителя, нажав соответствующие кнопки. Однако вскоре выяснилось, что при выезде на асфальт водители частенько забывали отключить блокировки, вследствие чего трансмиссия буквально рассыпалась на глазах. Тогда инженеры серьезно задумались об автоматической системе подключения механизма блокировки. В результате появилась вязкостная муфта (вискомуфта), разработанная компанией FF Development. В этом устройстве для снижения разницы в скоростях вращения приводных валов до минимума используется силиконовая жидкость. Как только одно из колес начинает проскальзывать, вязкость силиконовой жидкости в результате нагревания резко возрастает, что приводит к соединению дисков вискомуфты, следовательно, к вращению приводных валов приблизительно с одинаковой скоростью, т. е. к блокировке дифференциала. Обычно использовали комбинацию из свободного межосевого дифференциала и вискомуфты, которые играли роль блокирующего устройства и автоматически включались в определенных условиях. Другим устройством для блокировки  явился дифференциал повышенного трения типа Torsen, который изобрела американская корпорация Gleason Corp. Дифференциал повышенного трения представляет собой механическое устройство, в котором блокировка происходит за счет трения поверхностей деталей (чаще всего сухарей и звездочек), изготавливаемых из особопрочных материалов. При движении по асфальту дифференциал Torsen распределяет крутящий момент между осями поровну. Но стоит только колесам одной оси начать проскальзывать, крутящий момент перебрасывается на ту ось, колеса которой имеют лучшее сцепление с покрытием. В пределе соотношение крутящих моментов, передаваемых на оси, может достигать 20:80. Но есть еще некоторые детали, делающие Torsen более предпочтительным, чем вискомуфта. Torsen - устройство чисто механическое, что позволяет ему предотвращать пробуксовку, в отличие от вязкостной муфты, где на разогрев силиконового вещества и его застывание требуется некоторое время, и в результате вискомуфта способна лишь реагировать на потерю сцепления и исправлять уже сложившуюся ситуацию. Сейчас в межосеовом дифференциале применяется многодисковая муфта Халдекс. Система опознавания проскальзывания активизируется при наличии разности в частоте вращения передней и задней осей и затем распределяет тяговое усилие в необходимой пропорции между обеими осями.. На новых автомобилях семейства Гольф и Пассат муфта Халдекс встроена в редуктор заднего моста и управляется электроникой по специальной программе, учитывающей продольное ускорение, разность скоростей переднего и заднего мостов, нагрузку на двигатель, включенную передачу и другие параметры. Программа также участвует в работе системы ESP работает совместно с функцией EDS - электронной блокировкой дифференциала. Система реализует на всех режимах максимальную передачу крутящего момента на колёса и ни в чём не уступает, а во многом превосходит блокировку Torsen - например по управляемости с помощью электроники. Применявшаяся до последнего времени на автомобилях Фольксваген вискомуфта опознавала лишь одно проскальзывание, но не причины его возникновения.

 

С разработкой муфты “Haldex” был сделан гигантский рывок в создании современного полного привода. Муфта “Haldex” регулируема. Посредством компьютера удалось в процессе регулирования работы муфты учитывать дополнительную информацию. Теперь проскальзывание не является единственным решающим фактором распределения тягового усилия; на это оказывают влияние также динамические параметры движения автомобиля. Посредством шины данных CAN компьютер получает информацию от датчиков частоты вращения колес системы АБС и от системы управления двигателем (сигнал от датчика положения педали акселератора). Таким образом, в компьютер поступает вся необходимая информация о скорости, параметрах движения в поворотах, режимах тяги и торможения двигателем, что дает возможность компьютеру оптимально реагировать на изменения режимов движения. Новая муфта представляет собой компактный агрегат, который устанавливается на том же месте, где была вискомуфта, применявшаяся в прежнем приводе. Муфта размещена на картере главной передачи и имеет привод от карданного вала. Крутящий момент от двигателя передается через коробку передач, главную передачу передней оси и привод передней оси на карданный вал. Карданный вал связан с входным валом муфты. В муфте “Haldex” разъединяется жесткая связь между входным валом и выходным валом на главную передачу задней оси. Передача крутящего момента на главную передачу задней оси может быть осуществлена только через сжатый пакет дисков муфты “Haldex”. Управление муфтой (пакетом фрикционов) осуществляется посредством передачи рабочего давления электромаслонасоса блоком электрических клапанов.
Преимущества муфты “Haldex”
• постоянный полный привод с электронным регулированием многодисковой муфты;
• сохранение достоинств переднего привода;
• отсутствие повышенных напряжений в трансмиссии при парковке и маневрировании;
• отсутствие критической чувствительности к наличию различных шин (например, аварийного колеса);
• отсутствие ограничений при буксировке с вывешенной осью;
• возможность неограниченной сочетаемости с системами ABS, ASR, EDS, ESP

 

 

Это вискомуфта. На рисунке показаны пластины, прикрепленные к валам. Вискомуфта заполнена силиконовой жидкостью, которая обладает свойством застывать при нагреве и превращаться в жидкость при охлаждении. На этом свойстве силиконовой жидкости и построен принцип работы вискомуфты.

Так выглядит дифференциал Torsen, устанавливаемый на Mazda Miata. На фотографии хорошо видны валы с коническими подшипниками и боковые шестерни.
 

 

 

А это тот же Torsen в разрезе. Стрелками указаны направления распределения крутящего момента.

 

Многодисковое сцепление "Халдекс" с электронным управлением: 1 - управляющий блок; 2 - масляный фильтр; 3 - шестерня выходного вала; 4 - ведущие и ведомые диски сцепления; 5 - входной вал; 6 - рабочие цилиндры; 7 - регулировочный клапан; 8 - шаговый двигатель.

 

 

Основа системы постоянного полного привода xDrive – многодисковое сцепление, которое управляется контролируемым электроникой электроприводом. В зависимости от необходимости он менее чем за 100 миллисекунд сжимает или разжимает диски сцепления, перераспределяя крутящий момент между осями. Электронное управление привода получает сигналы от тех же датчиков, что и система DSC: поворота рулевого колеса, оборотов двигателя, вращения вокруг вертикальной оси и т. д. Полученная информация используется системой для определения необходимости перераспределить крутящий момент. Таким образом, главным достоинством xDrive является ее способность изменить распределение момента по осям не в ответ на пробуксовку колес или начало заноса, а с упреждением. В нормальных условиях момент распределяется между передней и задней осями в соотношении 40/60. А в случае необходимости (для корректировки заноса, при троганье с места на поверхностях с разными коэффициентами сцепления) на любую из осей может быть передано до 100% момента. Роль межколесных блокировок выполняет система DSC, подтормаживая буксующее колесо. Срабатывает xDrive быстрее, чем исполнительные механизмы системы стабилизации движения.

 

 

Принцип работы xDrive
Силы, действующие на колесо движущегося автомобиля, имеют три составляющие – вертикальную Fv, продольную Fu и поперечную Fs. Принцип работы xDrive основан на оценке их потенциальной результирующей Frr. Система постоянно просчитывает вероятность выхода этой результирующей за заложенные в память допустимые параметры. И в случае возникновения такой угрозы, мгновенно переносит крутящий момент с одной оси на другую, корректируя продольную составляющую. Таким образом xDrive борется не со следствием, а с причиной возникновения заноса или пробуксовки.

 

 

 

 

Работа xDrive в повороте
При прохождении поворотов, в зависимости от дорожных условий, автомобиль может демонстрировать недостаточную или избыточную поворачиваемость. Бороться с этим явлением призвана система DSC, которая корректирует обороты двигателя и подтормаживает одно или несколько колес, возвращая автомобиль на правильную траекторию. Если машина оборудована xDrive, то еще до срабатывания DSC система полного привода динамически перераспределяет крутящий момент на нужную ось: в случае недостаточной поворачиваемости – на заднюю, избыточной – на переднюю. Причем если в процессе прохождения поворота поворачиваемость превращается из избыточной в недостаточную, xDrive корректирует этот процесс.

 

 

Работа xDrive при троганье
При троганье на поверхности с разными коэффициентами сцепления еще до начала пробуксовки момент полностью перебрасывается на ось с лучшим сцеплением. В этом случае все 100% мощности используются для ускорения автомобиля. Оборудованный лишь DSC автомобиль в подобной ситуации сначала пробуксует, затем система заблокирует задний мост и для троганья будет задействовано всего 38% тяги, которую получает передняя ось.

Работа xDrive вне дороги
Если полноприводные седаны и универсалы BMW остаются дорожными автомобилями, то SUV, несмотря на отсутствие жестких межосевых блокировок, демонстрируют довольно высокий внедорожный потенциал. При движении по сильно пересеченной местности, предполагающей вывешивание колес, xDrive мгновенно перебрасывает большую часть момента на мост, оба колеса которого твердо стоят на земле. Часть момента остается и на оси, одно из колес которой вывешено. В этом случае роль межосевых блокировок выполняет система DSC, тормозящая вывешенное колесо.
 

 


Типы и особенности систем полного привода

Как показывает практика, полный привод не всегда бывает полным. Это зависит от особенностей конструкции трансмиссии, дорожных условий и режима эксплуатации. Вступив на путь создания полноприводных легковых автомобилей, компании работали в нескольких направлениях и действовали сначала с оглядкой на стоимость нововведений. В результате появился целый ряд конструктивных схем полноприводных трансмиссий — Quattro, Syncro, 4Matic, 4Motion и   т. д. По принципу действия их можно объединить в три большие группы:
-постоянный полный привод;
-автоматически подключаемый полный привод;
-системы с ручным включением полного привода
Кстати, в аббревиатуру AWD и 4WD заложена информация о том, к какой группе относится тот или иной полноприводный автомобиль. AWD обозначается постоянный или автоматически включаемый полный привод, а 4WD — полный привод, включаемый и выключаемый вручную, т.е. водителем. Рассмотрим вкратце особенности каждой из трех схем.
Постоянный полный привод
В такой трансмиссии крутящий момент от двигателя передается на все колеса. Правда, в процессе ее создания возникла одна проблема, которая не позволяла инженерам позаимствовать технические решения у обычных вездеходов. Дело в том, что у настоящих «джипов» связь между передней и задней ведущими осями-  жесткая, т.е. без дифференциала. Если на автомобиле с такой трансмиссией ездить по дорогам с твердым покрытием, управляемость у него будет очень плохая, так как передние и задние колеса проходят разный путь, а следовательно, менее нагруженные из них стремятся к пробуксовыванию.
Пришлось, помимо переднего и заднего межколесных дифференциалов, установить еще и третий-  межосевой или, как его еще называют, центральный дифференциал. В зависимости от его характеристик крутящий момент распределили между колесами передней и задней оси в необходимой пропорции. Тем не менее в таком виде полноприводная трансмиссия оказалась пригодна только для дорог с однородным дорожным покрытием. На скользкой дороге может возникнуть ситуация, когда весь крутящий момент двигателя будет передаваться на колесо, потерявшее сцепление с дорогой, и автомобиль не сможет сдвинуться с места. Причем шансов попасть в такую ситуацию у полноприводной машины в два раза больше, чем у передне- или заднеприводной. Эту проблему решили путем установки межосевого дифференциала повышенного трения или механизма автоматической его блокировки. Для этих целей широкое распространение получил самоблокирующийся механический дифференциал Torsen (от TORgue SENsing — чувствительный к моменту). При отсутствии пробуксовок он передает крутящий момент к передней и задней ведущим осям в пропорции 50:50, которая соответствует наилучшей устойчивости и управляемости. При появлении малейших признаков пробуксовки колес одной оси дифференциал Torsen срабатывает практически мгновенно и перераспределяет до 75% крутящего момент на колеса, которые не потеряли сцепления с дорогой. Благодаря простоте конструкции и эффективности работы инженеры Audi отдают предпочтение центральному дифференциалу Torsen, начиная со второго поколения модификаций Quattro. Еще одним распространенным способом автоматической блокировки межосевого дифференциала стало использование вискомуфты. Например, в трансмиссии Mitsubishi Eclipse GSX, Subary Impreza и Legasy, старых BMW 325ix и Toyota Celica turbo обычный механический межосевой дифференциал совмещен с вискомуфтой, которая реагирует на разницу скоростей вращения колес передней и задней ведущих осей. Такая схема обеспечивает распределение крутящего момента по осям в диапазоне от 50:50% — на хорошей дороге до 95:5% или 5:95% — на бездорожье. Позже вместо устройств блокировки межколесных дифференциалов стали использовать возможности новых электронных систем: противобуксовочных (ASC), управления тягой (ASR, ETS). Получая информацию от датчиков антиблокировочной системы тормозов (ABS), эти системы притормаживают буксующие колеса, обеспечивая перераспределение крутящего момента на другие колеса. Развитие трансмиссий полноприводных легковых автомобилей подтолкнуло автопроизводителей к совершенствованию приводов внедорожников. Интересная схема постоянного полного привода применяется на Mercedes М-класса. У этого внедорожника все три дифференциала — свободные, т.е. не блокируются. А на бездорожье или скользкой зимней дороге в полную силу работает «умная» система контроля тяги ETS: электронный блок, анализируя показания датчиков ABS, «вычисляет» буксующее колесо и в нужной степени активизирует его тормозной механизм. А в отличие от М-класса в трансмиссии такого «внедорожного авторитета» как Mercedes G-класса все три дифференциала- c блокировками, которые включаются и отключаются дистанционно и не без помощи «умной» электроники.
Автоматически подключаемый полный привод
В нормальных дорожных условиях такая трансмиссия работает как передне- или заднеприводная. Это позволяет автомобилям сохранять «фамильные» черты, свойственные тому или иному типу привода. А в экстремальных ситуациях, когда одно или два ведущих колеса теряют сцепление с дорогой и начинают пробуксовывать, крутящий момент перераспределяется и на колеса другой оси. Многолетнюю приверженность такой схеме для своих легковых моделей демонстрируют Volkswagen, Mercedes и Honda. Конструктивно это осуществляется таким образом. Вал, который передает крутящий момент на ведущую ось, через специальную муфту связан с колесами другой оси. Муфта обычно устанавливается вместо межосевого дифференциала или в непосредственной близости к заднему мосту. В нормальных условиях движения муфта разблокирована, а в экстремальных ситуациях- блокирует и передает крутящий момент на колеса вспомогательной оси. В автомобилях с автоматически включаемым полным приводом применяются несколько типов муфт: уже упоминавшаяся вискомуфта, электронно-управляемые фрикционные муфты, гидравлические системы блокировки фрикционной муфты и т. д.
Инженеры компании Mercedes поручили функцию предотвращения пробуксовки задних ведущих колес электронной системе 4Matic. При фиксировании одним из датчиков ABS пробуксовки одного или двух колес блок управления блокирует гидравлическую муфту межосевого дифференциала, подключающего в работу передние колеса. Если и этого недостаточно, следует команда на блокировку муфты дифференциала заднего моста. Шведская компания Haldex разработала электронно- управляемую фрикционную муфту для полноприводных модификаций концерна Volkswagen 4Motion, созданных на платформе Golf IV — Bora, Audi A3 и TT, Skoda Octavia, Seat Toledo и Leon. Муфта устанавливается непосредственно перед задним мостом, а одно из главных ее достоинств- возможность путем программирования электронного блока настроить работу трансмиссии, задавая индивидуально для каждой модели, к примеру, моменты блокировки или величину передаваемого крутящего момента. На автомобилях для активного отдыха компании Honda CR-V и HR-V японские инженеры применили устройство блокировки Real Time 4WD. Его особенность заключается в том, что муфта устройства блокируется двухконтурной гидравлической системой. Два насоса системы- закачивающий и откачивающий- приводятся в действие валами, соединенными с передним и задним мостами. При отсутствии разности в частоте вращения передних и задних колес давление масла в контуре практически отсутствует. Когда же передние колеса начинают пробуксовывать, давление повышается и блокируются диски. Так происходит перераспределение крутящего момента от передних колес на задние, которые в штатной ситуации являются нейтральными, не ведущими.
Системы с ручным включением полного привода
В отличие от «заряженных» версий легковушек со спортивным характером полный привод у внедорожников, в том числе и «паркетных», должен выполнять свою первозданную функцию- помогать передвигаться по дороге с плохим покрытием, где особенно не погоняешь. Такие трансмиссии, как правило, не имеют межосевого дифференциала, без которого не могут обойтись «легковушки» с постоянным полным приводом. При включенном приводе четырех колес передняя и задняя ось в такой схеме имеют жесткую связь, а крутящий момент передается в соотношении 50:50.
Ездить в этом случае по скоростной магистрали с включенным полным приводом- бессмысленно. Во-первых возникает опасность проскальзывания колес, особенно в поворотах, во-вторых, детали трансмиссии (карданные валы, шестерни колесных дифференциалов и т.д.) испытывают большие перегрузки и если полный привод вовремя не выключить, поломок не избежать. Но все же водители иногда забывают это делать. Поэтому в некоторых схемах есть сигнализаторы или устройства автоматического отключения полного привода при движении с большей скоростью.
Выводы
Совет тем, кто хочет купить полноприводный автомобиль, но не знает, какому именно типу трансмиссии отдать предпочтение. Просто необходимо знать, где и как преимущественно будет эксплуатироваться автомобиль.
Если вы любитель скоростной езды, покупайте легковой автомобиль с постоянным полным приводом. Если вы любитель умеренной езды, но зимой хотите себя обезопасить от лишних проблем, покупайте автомобиль с автоматически включаемым полным приводом.
Любителям охоты, рыбалки, поездок на дачу и отдыха на природе независимо от времени года следует ориентироваться на максимальный запас проходимости своих автомобилей. Этому соответствуют внедорожники с большим дорожным просветом, понижающим рядом передач и как можно большим числом блокировок дифференциалов (лучше всего трех).

По совету посетительницы сайта Ломакиной Екатерины Игоревны дополняю страницу следующим разделом.

КАК ОТЛИЧИТЬ ВНЕДОРОЖНИК ОТ "ПАРКЕТНИКА"?

Классический внедорожник, то есть автомобиль, предназначенный для эксплуатации в условиях тяжелого бездорожья, должен иметь следующие конструктивные особенности:

  • раму;

  • постоянный или подключаемый механически полный привод (именно механически, а не, например, через вискомуфту);

  • неразрезные мосты;

  • механическую блокировку межосевого и межколесного дифференциалов (причем, опять же, именно механическую, а не ее имитацию путем подтормаживания буксующего колеса);

  • понижающую передачу;

  • высокий дорожный просвет;

Механизмы блокировки межосевого дифференциала, подключения второй оси и управления понижающей передачей часто объединены в раздаточную коробку. Ее наличие — один из основных признаков настоящего внедорожника.

Кроссовер (в обиходе «паркетник») — это что-то среднее между обычным легковым автомобилем и внедорожником. Предназначен для эксплуатации по асфальту, грунтовым дорогам и легкому бездорожью. Имеет увеличенный дорожный просвет, полный привод (подключаемый автоматически, а не механически). Некоторые модели имеют только передний привод. Вот и все признаки, которые взяты от внедорожника. С обычными же легковыми автомобилями кроссоверы роднит несущий кузов, независимая подвеска колес. Да и вообще, кроссоверы создаются на платформе легковых автомобилей.

Стремление автопроизводителей создать и занять побольше «ниш» авторынка привело к созданию так называемых SUV (Sport Utility Vehicle). Это автомобили универсального назначения, имеющие некоторые атрибуты внедорожника (рама, понижающая передача, блокировки), но цельный мост только сзади, а передняя подвеска — независимая. Такие машины обладают неплохими характеристиками на шоссе и способны преодолеть достаточно серьезное бездорожье. То есть это еще не внедорожники, но уже и не «паркетники».

Что такое турбонаддув

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

 

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

 

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

 

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

 

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

 

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

 

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

 

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Бывают и более изощрённые конструкции. Например, инженеры придумали устанавливать на мотор не одну, а две турбины. Одна работает на маленьких оборотах двигателя, создавая тягу на «низах», а вторая включается позже. Такое решение получило название twin-turbo и позволило убить сразу двух зайцев — и турбояму, и проблему нехватки мощности. В конце минувшего века автомобили с последовательной схемой подключения турбин имели некоторую популярность, их выпускали Nissan, Toyota, Mazda и даже Porsche. Однако в силу сложности конструкции век таких аппаратов оказался недолог, и распространение получили другие идеи.

Например, параллельный турбонаддув, или biturbo. То есть вместо одной турбины ставят две маленькие одинаковые турбины, которые работают независимо друг от друга. Идея такова: чем меньше турбина, тем быстрее она раскручивается, тем более «отзывчивым» получается двигатель. Как правило, две маленькие турбины ставили на V-образные двигатели, по одной на каждую «половинку».

Ещё один вариант — турбины с двумя «улитками», или twin-scroll. Одна из них (чуть большего размера) принимает выхлопные газы от одной половины цилиндров двигателя, вторая (чуть меньшего размера) — от второй половины цилиндров. Обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

 

Но и на этом конструкторы не успокоились. Естественно, чем городить две турбины, гораздо проще обойтись одной. Надо только сделать так, чтобы турбина одинаково эффективно работала во всём диапазоне оборотов. Так появились турбины с изменяемой геометрией. Здесь и начинается самое интересное. В зависимости от оборотов поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

 

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

 

ТУРБОТАЙМЕР

Турботаймер предназначен для защиты автомобильного двигателя с турбонаддувом от преждевременного износа и повреждений в результате тепловых ударов. После выключения зажигания турботаймер поддерживает работу двигателя на холостых оборотах, пока температура узла турбины не снизится до безопасного уровня. Владелец автомобиля может не дожидаться окончания работы двигателя, а включить сигнализацию либо просто закрыть машину и удалиться по своим делам.

Основные возможности турботаймера

Поддержка работы двигателя после выключения зажигания
Автоматическое определение времени, необходимого для остывания турбины
Установка базового времени остывания турбины
Обучение сигналам и логическим уровням датчиков двигателя, а также частоте холостых оборотов
Отключение определенных датчиков автосигнализации и блокировок двигателя на время работы турботаймера
Устанавливается в автомобили с бензиновыми и дизельными двигателями, оборудованные автоматической или ручной коробками переключения передач (а также в автомобили, не оборудованные тахометрическим датчиком)
Программирование режимов работы
Индикация режимов работы

Наиболее надежной и популярной моделью является турботаймер "Absolute-TTX", стоимость с установкой 2500 рублей.

 

Коробки передач

 

Назначение

Говоря сухим техническим языком, коробка передач служит для изменения крутящего момента, передаваемого от коленчатого вала двигателя к ведущим колесам, для движения автомобиля задним ходом и длительного разобщения двигателя от трансмиссии во время стоянки автомобиля и при движении его по инерции (накатом).

А теперь с точки зрения новичка давайте разберемся - зачем вообще нужна коробка передач на автомобиле, и для чего нужно переключать передачи? Переключение передач - необходимость, возникшая в связи с неравномерной характеристикой крутящего момента ДВС. Сравним для примера ДВС и электродвигатель.

 

Основное различие между автомобильным и электрическим тяговым двигателем с интересующей нас точки зрения заключается в тяговых характеристиках, то есть в том, как меняется в зависимости от числа оборотов мощность и крутящий момент. У электродвигателя крутящий момент при небольших оборотах довольно велик. По мере раскручивания момент падает. Для транспортной машины такая характеристика наиболее благоприятна: при трогании с места и разгоне, когда приходится преодолевать значительные силы инерции, желательно иметь как можно больший крутящий момент. А для поддержания равномерного движения момент нужен уже намного меньше. Заметим, что мощность электродвигателя на любых оборотах может оставаться близкой к максимальной и на всех режимах используется почти полностью, то есть он отлично приспособлен к дорожным условиям работы. У двигателя внутреннего сгорания все обстоит иначе: мощность при низких оборотах у него значительно понижена, а величина крутящего момента в пределах эксплуатационных чисел оборотов вообще мало изменяется. График показывает (рис.А), что если сопротивление движению увеличилось, и обороты двигателя начинают падать, то у электродвигателя это сопровождается значительным (в несколько раз) увеличением крутящего момента; у автомобильного же двигателя момент сначала немного растет, а потом уменьшается - двигатель глохнет. Как видим, тяговая характеристика двигателя внутреннего сгорания совершенно неудовлетворительна. Но силовая установка с таким мотором по своей легкости, экономичности и другим качествам пока превосходит электромотор. Поэтому конструкторам пришлось примириться с недостатками ДВС и для их преодоления поставить на автомобиль коробку передач, которая изменяет передаточное отношение между двигателем и ведущими колесами и соответственно крутящий момент на них. На рисунке Б показано, как с помощью ступенчатой коробки передач тяговая характеристика ДВС пытается приблизиться к идеальной гиперболе.

 

А что такое передаточное отношение? Немного углубимся в механику. В шестеренчатой передаче, состоящей из двух шестерен, одна из которых является ведущей, а другая ведомой, их относительные размеры определяют скорость вращения и крутящий момент. Отношение числа зубьев ведомой шестерни к числу зубьев ведущей и называется передаточным числом. Если ведущая шестерня меньше ведомой, то скорость вращения ведомой будет меньше, а крутящий момент – больше, и наоборот. То есть, выигрывая в силе, теряем в скорости, и, напротив - выигрывая в скорости, теряем в силе. Если в передаче участвует несколько пар шестерен, то общее передаточное число получается умножением передаточных чисел всех пар шестерен, участвующих в передаче.

Для получения различного по величине крутящего момента, необходимого для работы автомобиля в разных условиях, в коробке передач имеется несколько пар шестерен с различным передаточным числом. Если между ведущей и ведомой шестернями поместить промежуточную, то ведомая шестерня изменит направление вращения на обратное (получим передачу заднего хода).

Таким образом, любая коробка передач, будь то «механика», «автомат» или вариатор, служит для обеспечения оптимального режима работы двигателя в различных условиях движения путем изменения передаточного отношения.

В любой коробке передач выделяют высшие и низшие ступени (передачи).

При трогании с места, разгоне, движении на небольшой скорости и по бездорожью - необходим высокий крутящий момент, который достигается при средне - высоких оборотах, но отсутствует необходимость развивать высокую скорость. Для движения в этом режиме служат низшие ступени коробки передач (обычно с первой по третью), имеющие наибольшее передаточное отношение; при этом даже при больших оборотах двигателя автомобиль будет ехать медленно.

Для равномерного движения на высокой скорости необходимо обеспечить большую частоту вращения колёс, поддерживая обороты двигателя в оптимальном диапазоне. Для этого служат высшие передачи (от четвертой и выше), имеющие значительно меньшие передаточные числа по сравнению с низшими. При этом автомобиль будет при тех же оборотах двигателя ехать достаточно быстро, пока не будут достигнуты максимальные рабочие обороты двигателя. Однако на высших передачах автомобиль не может двигаться с небольшой скоростью и, тем более, трогаться с места, так как двигатель не сможет развить крутящего момента, необходимого для того, чтобы сдвинуть автомобиль с места, и заглохнет.

Передача с передаточным отношением, равным 1, называется прямой (как правило, четвертая). Если передаточное число меньше единицы, такая передача называется ускоряющей (от пятой и выше). Ускоряющая передача включается при движении автомобиля в хороших дорожных условиях, когда не требуется большой силы тяги на ведущих колесах. Давая возможность двигателю работать с пониженными оборотами, ускоряющая передача способствует уменьшению износа двигателя и экономии топлива

С понятием передаточного числа связано выражение «длинная коробка» и «короткая коробка». Речь идёт о разнице в передаточных числах разных передач – в «длинной» коробке она больше. Рассмотрим два автомобиля, одинаковых во всём, кроме коробок передач. Водитель авто с «короткой» коробкой, поддерживая высокие обороты мотора, разгонится быстрее и быстро наберёт максимальную скорость. Водитель на машине с «длинной» коробкой разгоняться будет дольше, но до более высокой скорости. Таким образом, выбор коробки зависит от темперамента водителя. С «короткой» коробкой автомобиль более динамичен, но чаще приходится переключаться. С «длинной» – не такой резвый, но диапазон скоростей на одной передаче больше, то есть, можно добраться до высшей передачи и кататься на ней со скоростью от пятидесяти до ста с лишним, изменяя её только газом и тормозом. Любители агрессивного «спортивного» стиля предпочтут «короткую» коробку, люди спокойные – длинную.

Типы КПП

Современные автомобили могут оснащаться одним из четырех видов КПП – механической, автоматической, роботизированной или вариаторной.

Механическая коробка передач с ручным переключением состоит из набора шестерен. Изменение передаточного числа осуществляется путем введения их в зацепление в различных сочетаниях.

Преимущества:

  • Наименьшая по сравнению с другими типами КПП стоимость и масса;

  • Высокие КПД, топливная экономичность и динамика разгона;

  • Простота и отработанность конструкции, а следовательно - высокая надежность;

  • Не требуют дорогостоящих расходных материалов, просты в обслуживании;

  • Благодаря жесткой связи двигателя с ведущими колесами, водитель может более эффективно использовать автомобиль при передвижении в гололедицу, по грязи и бездорожью;

  • МКПП допускает полное разобщение двигателя и трансмиссии, поэтому такой автомобиль легко пускается «с толкача» и может буксироваться на любое расстояние с любой скоростью.

Недостатки:

  • Утомляющее водителя переключение передач, особенно в городском цикле и движении в пробках, необходимость навыка для правильного выбора передачи и плавного переключения передач без рывков;

  • Ступенчатое изменение передаточного отношения;

  • Малый ресурс сцепления.

 

 

 

Автоматическая КПП – планетарная коробка передач с автоматическим переключением. Планетарная передача состоит из нескольких шестерен, называемых планетарными или сателлитами, вращающихся вокруг центральной (или солнечной) шестерни. Планетарные шестерни фиксируются вместе с помощью водила. Кроме этого, дополнительная внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни (как планеты вокруг Солнца), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга. В современных коробках используются несколько планетарных передач для получения большого диапазона передаточных чисел.

К преимуществам автоматической коробки следует отнести, прежде всего, удобство управления и комфорт. АКПП способны менять передачи на полной мощности двигателя, что практически неосуществимо в МКПП. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя. В плюсы «автомата» можно добавить плавность хода во время переключения, отсутствие откатывания при трогании с места, защищенность двигателя и деталей трансмиссии от перегрузок и поломок из-за неправильного включения передач, увеличенный ресурс.

К недостаткам АКПП обычно относят более низкий КПД, более высокую цену, а также стоимость ремонта и обслуживания, повышенный расход топлива, ухудшение динамических качеств автомобиля, задержки в переключении передач. Однако с каждым годом эксплуатационные свойства автоматических коробок улучшаются, а число поклонников АКПП уверенно растет.

 

 

Вариатор представляет собой бесступенчатую коробку передач. Его главные детали - два раздвижных шкива и соединяющий их ремень, в сечении имеющий трапециедальную форму. Если половинки ведущего шкива сдвинуть, они вытолкнут ремень наружу - радиус шкива, по которому работает ремень увеличится, следовательно, увеличится и передаточное отношение. А если половинки ведомого шкива, наоборот, раздвинуть, то ремень провалится внутрь и будет работать по меньшему радиусу - передаточное отношение уменьшится. Если оба шкива будут в промежуточном положении, то передача станет прямой. Вместо ремня может применяться цепь, набранный из металлических пластин ремень, но принцип от этого не меняется. Для трогания автомобиля с места используется обычное сцепление или небольшой гидротрансформатор, который вскоре после начала движения блокируется. Управление дисками шкивов осуществляет электронная система из сервоприводов, блока управления и датчиков.

Главным преимуществом вариатора является то, что двигатель постоянно работает в оптимальном режиме. Как бесспорные плюсы вариатора (по сравнению с АКПП) выступают: экономичность, более плавный ход и динамичный разгон. Вариатор проще по конструкции, чем обычный «автомат». Однако по сравнению с МКПП вариаторы имеют меньшую экономичность и динамику.

Основным минусом вариатора является его несовместимость с мощными моторами из-за слабости и недолговечности ремней. Также ограничивают применение бесступенчатой трансмиссии потребность в дополнительных механизмах для режимов трогания и заднего хода,высокая стоимость, дорогое обслуживание и ремонт,большой вес.

Роботизированная коробка – это обычная механическая коробка передач. Для передачи крутящего момента от двигателя к трансмиссии также используется стандартное «сухое» однодисковое сцепление. Отличие состоит в том, что процессы включения-выключения сцепления и переключения передач автоматизированы. Такая коробка облегчает процесс управления автомобилем, освобождая от необходимости переключать передачи вручную и задумываться о том, какую именно передачу включить в данный момент. К преимуществам коробки-робота можно отнести небольшой вес, невысокую стоимость и экономичность.

Этот тип коробки имеет и несколько существенных недостатков. В первую очередь это касается плавности его работы, которая оставляет желать лучшего. Передачи переключаются с заметной задержкой, а в режиме «газ в пол» появляются толчки и рывки при переключениях. Не спасает и ручной режим, сцеплением ведь все равно управляет электроника. В четкости переключений «робот» уступает даже простому «автомату». К тому же, «роботу» свойственен небольшой откат при начале движения. Такой тип коробки обычно ставят на недорогие модели.

Более совершенной является роботизированная коробка с двойным сцеплением. В такой коробке одно сцепление включает нечетные передачи, а другое - четные. Во время езды крутящий момент передается по одному сцеплению, то есть диск сомкнут. В то же время диск второго сцепления разомкнут, но в самой коробке следующая передача уже включена. Когда электроника «чувствует», что надо переключаться на другую передачу, то первый диск просто размыкается, а второй синхронно смыкается. Это позволяет избавиться от рывков при переключениях и обеспечивает непрерывный поток мощности от двигателя к колёсам, что недостижимо для обычной механической коробки с одним сцеплением. Режим переключения – как ручной, так и автоматический. Технически это довольно сложный вид коробки (а значит, и недешевый), но по динамике и экономии топлива он превосходит даже простую механику.

Роботизированная коробка передач DSG (Direct Shift Gearbox) является в настоящее время самой совершенной автоматизированной коробкой, устанавливаемой на массовые модели легковых автомобилей.

Коробка DSG обеспечивает переключение передач без разрыва потока мощности, что значительно повышает ее потребительские качества по сравнению с другими «роботами».

Непрерывная передача крутящего момента от двигателя к ведущим колесам достигнута за счет применения двух сцеплений и соответствующих им двух рядов передач. Коробка передач DSG имеет шестиступенчатую и семиступенчатую конструкции. Семиступенчатая коробка (крутящий момент до 250 нм) устанавливается на легковые автомобили B, C и некоторые модели D класса. Шестиступенчатая коробка передач передает крутящий момент до 350 нм и устанавливается на более мощных машинах.

Коробка передач DSG имеет следующее устройство:

  • двойное сцепление;

  • первый ряд передач;

  • второй ряд передач;

  • главная передача;

  • дифференциал;

  • система управления коробкой передач;

  • корпус (картер) коробки.

 

Схема роботизированной коробки передач DSG

Двойное сцепление обеспечивает передачу крутящего момента на первый и второй ряды передач. Сцепление включает ведущий диск, соединенный через входную ступицу с маховиком, и две фрикционные многодисковые муфты, связанные через главную ступицу с рядами передач.

На шестиступенчатой коробке передач двойное сцепление «мокрого» типа, т.е. постоянно находится в масле. Семиступенчатая коробка имеет сухое сцепление, что позволяет значительно уменьшить объем заправляемого масла (с 6.5 л до 1.7 л), снизить энергозатраты и повысить топливную экономичность двигателя. С этой же целью на семиступенчатой коробке масляный насос с гидравлическим приводом заменен на более экономичный электрический насос.

Первый ряд коробки обеспечивает работу нечетных передач и заднего хода, второй ряд отвечает за четные передачи. Каждый из рядов передач представляет собой первичный и вторичный валы с блоками шестерен. Первичные валы расположены соосно, при этом первичный вал второго ряда выполнен полым и надет на первичный вал первого ряда.

Шестерни на первичных валах имеют жесткое соединение с валом. Шестерни вторичных валов вращаются свободно. При этом шестерни первичного и вторичного валов находятся в постоянном зацеплении. Между шестернями вторичного вала расположены муфты синхронизаторов, которые осуществляют включение конкретной передачи. Для выполнения реверсивного движения в коробке передач предусмотрен промежуточный вал с шестерней заднего хода. На вторичных валах также расположены ведущие шестерни главной передачи.

Для управления сцеплением и переключения передач предназначена система управления коробкой передач. Система управления включает:

  • входные датчики;

  • электронный блок управления;

  • электрогидравлический блок управления;

  • исполнительные механизмы.

Электронный и электрогидравлический блоки управления, а также практически все входные датчики, объединены в единый модуль, имеющий название Mechatronic. Модуль управления располагается непосредственно в картере коробки передач.

Входные датчики отслеживают частоту вращения на входе и выходе коробки передач, давление и температуру масла, а также положение вилок включения передач. Электронный блок управления на основании сигналов датчиков реализует, заложенный в него, алгоритм управления коробкой передач.

Электрогидравлический блок управления обеспечивает работу гидравлического контура управления коробкой передач. В него входят следующие элементы:

  • золотники-распределители;

  • электромагнитные клапана;

  • клапана регулирования давления;

  • мультиплексор.

Золотники-распределители приводятся в действие рычагом селектора. Электромагнитные клапаны осуществляют переключение передач. Клапаны регулирования давления обеспечивают работу фрикционных муфт. Электромагнитные клапаны и клапаны регулирования давления являются исполнительными механизмами системы управления коробкой передач.

В коробке применено устройство мультиплексор, которое позволяет управлять восьмью гидроцилиндрами переключения передач только с помощью четырех электромагнитных клапанов. В исходном положении мультиплексора работают одни гидроцилиндры, в рабочем – другие, при этом в обоих режимах общие электромагнитные клапаны.

Принцип работы коробки передач DSG заключается в последовательном включении передач обоих рядов. При этом во время работы одной передачи, следующая передача уже выбрана и готова к включению.

 

Типы кузовов

Рама

Силовой каркас автомобиля, к которому крепятся все узлы и агрегаты. Наличие рамы характерно для грузовых автомобилей и внедорожников. Рамы бывают разной конструкции. Современные легковые автомобили рам не имеют, также как и многие внедорожники. У них несущей конструкцией является сам кузов. Рама служит основанием для крепления частей и агрегатов автомобиля. Она воспринимает все нагрузки, возникающие при движении автомобиля. У автомобилей с несущим кузовом рама объединена с каркасом кузова или вообще отсутствует. Тогда функции рамы выполняет кузов.

В зависимости от конструкции рамы делят на лонжеронные и хребтовые.

Основные плюсы от рамы: Автомобили могут перевозить больший вес чем обычные, так же большая жесткость на кручение, что идеально подходит для внедорожников, так же возможность буксировать более тяжелые прицепы.

На большинстве грузовых автомобилей применяют лонжеронные рамы, состоящие из двух продольных балок (лонжеронов), соединенных поперечными траверсами (поперечинами). Наиболее распространенная форма сечения лонжерона — швеллер. Поперечины могут быть различного сечения. Их количество и место расположения определяются особенностями компоновки автомобиля. Поперечины соединяют с лонжеронами с помощью заклепок, болтов или сварки. Наиболее распространены клепаные рамы как наиболее технологичные и простые в изготовлении. Болтовое соединение элементов рам используют при мелкосерийном производстве. Цельносварные рамы применяют на сверхтяжелых самосвалах.

Рамы часто выполняют переменной ширины: более широкой в зоне двигателя и суженной в зоне заднего моста.

Хребтовые рамы образуются картерными деталями агрегатов автомобиля. Их применяют ограниченно ввиду сложности компоновки агрегатов и не технологичности.

Рама интегрированная


Конструкция автомобиля, где элементы кузова образуют жесткую конструкцию, выполняющую роль рамы. Порой превосходит по жесткости даже традиционные рамные конструкции. Основное достоинство – снижение центра тяжести и уменьшение веса.

 

Несущий кузов

Первый несущий кузов был разработан в 1921 году компанией Lancia. (модель Lancia Lambda)
До этого времени все автомобили мира имели рамную конструкцию. Первый массовый автомобиль с несущим кузовом сошёл с ковеера Opel в 1934 году (модель Opel Olimpia).Первый отечественный автомобиль с несущим кузовом сошёл с конвеера ГАЗ в 1946 году (ГАЗ-М20 "Победа"). Подробнее o первом отечественном автомобиле с несущим кузовом.

Несущий кузов это тип кузова, в котором отсутствует рама. Основную несущую роль играет сам кузов. Все узлы и агрегаты (двигатель, КПП, шасси, подвеска) крепятся непосредственно на кузов. Как правило несущий кузов применяется на легковых автомобилях. Детали такого кузова подразделяются на несущие и оперение. В отличие от рамной конструкции несущий кузов имеет меньший вес и позволяет более рационально разместить узлы и агрегаты.

Подвеска

 

 

 

Подвеска автомобиля - система механизмов и деталей соединения опорных элементов (колёс, катков, лыж) с корпусом машины, предназначенная для снижения динамических нагрузок и обеспечения равномерного распределения их на опорные элементы при движении, служащая также для повышения тяговых качеств машины. Подвеска – это механизм, который связывает колеса с автомобилем и позволяет им перемещаться в заданных направлениях, поворачивать, повторять профиль дороги. От подвески зависит множество аспектов поведения машины: устойчивость, управляемость, комфорт и даже тормозной путь.

Автомобильная подвеска по конструкции бывает зависимой и независимой.
- в зависимой подвеске -  жёсткая балка (передняя ось, картер заднего моста) связывает упругие элементы с колёсами. В зависимой два колеса находятся на одной оси, жестко их соединяющей. Важное преимущество этой подвески заключается также в способности поддерживать постоянный дорожный просвет.

 

 

Машина с зависимой подвеской не теряет способности двигаться даже при серьезных повреждениях. Как показывает практика, с погнутым мостом реально ехать, во всяком случае добраться до цивилизации своим ходом вполне реально. В ситуации сильного повреждения моста его можно отключить вовсе (даже если у автомобиля постоянный полный привод, снять кардан). Если отсоединить полуоси от ступиц, то мост не будет мешать вращаться колесам. Таким образом получится автомобиль с приводом на одну ось, который вполне может передвигаться.
 
- в независимой подвеске имеется специальный направляющий аппарат (качающиеся рычаги, стойки) для каждого упругого элемента, связывающего подвешенную часть автомобиля с колесом. Поэтому правое и левое колёса одной оси имеют самостоятельные вертикальные перемещения. Независимая подвеска не имеет оси, жестко соединяющей колеса (как зависимая подвеска), следовательно, колеса в независимой подвеске имеют свободу действий относительно друг друга. То есть если одно из колес наедет на небольшое препятствие, это никак не отразится на другом. У подобной подвески более сложная кинематика, что значительно улучшает управляемость и влияет на комфорт. Также снижаются неподрессоренные массы, так как нет тяжелого моста, который обычно играет роль оси, соединяющей колеса.

На рисунке, наглядно показано, как ведет себя в колее мост, и независимая подвеска. Дорожный просвет под цельным мостом, всегда остается постоянным, тогда как независимая подвеска, отрабатывая неровности, или сжимаясь при торможении, не может этого обеспечить.

 

 


В жизни все намного сложнее, нежели на рисунке, ведь кузов тоже кренится в повороте, а это значит, что колесо не должно перемещаться строго параллельно ему. По этой причине верхний рычаг делают короче, вследствие чего пятно контакта останется максимальным. Следует учитывать, что кузов может крениться сильнее или слабее, поэтому нужно очень точно выбирать длину рычагов, жесткость крепления подвески к кузову, характеристики амортизаторов, тип резины и многое другое. Но добиться абсолютно стабильного пятна контакта все равно не получится, ведь при прохождении поворотов с различной скоростью и загрузкой кузов будет крениться по-разному, поэтому в конструкции подвески всегда есть компромисс. «Однозначно» можно настроить лишь подвеску конкретного гоночного автомобиля, который будет ездить только по определенной трассе.

Механическая подвеска - подвеска, не использующая пневматических устройств, только механические - рессорная, пружинная  или торсионная подвеска.
1) Рессорная подвеска - механическая подвеска, упругим элементом которой является листовая рессора. Рессоры обычно применяются в зависимой подвеске грузовых автомобилей, а также в задней подвеске некоторых легковых. Листовые рессоры применяются по сей день, в основном на тяжелой технике и типичных "рабочих лошадках". Когда-то это был самый распространенный тип упругих элементов. Преимущества рессор заключаются в том, что они могут выступать в качестве конструктивных элементов, крепящих ось к раме, и за счет трения между листами обладают небольшими амортизирующими свойствами. В основном используются там, где требуется высокая грузоподъемность, и почти всегда в задней подвеске современных пикапов.
2) Пружинная подвеска - механическая подвеска, упругим элементом которой является пружина подвески. На сегодняшний день витые пружины почти полностью вытеснили рессоры, ведь пружинная подвеска лучше «отслеживает» профиль дороги, а значит положительно влияет на комфорт и управляемость и обеспечивает лучшую артикуляцию подвески, что, в свою очередь, позитивно сказывается на проходимости. Пружины легче и меньше, с их помощью можно по-разному компоновать подвеску, они проще и дешевле в производстве. А столь распространенная сегодня подвеска, как McPherson, вообще была бы немыслима без пружин.
3) Торсионная подвеска - механическая подвеска, упругим элементом которой является торсион. Торсион – это стальной стержень определенной длины, который работает на скручивание. Если взять в руки металлический прут и попробовать его скрутить, то он будет упруго сопротивляться. Так, например, автомобили Toyota Land Cruiser 100VX, Mitsubishi Pajero II и Pajero Sport оснащены передней независимой подвеской, где в качестве упругих элементов применяются торсионы. Они крепятся к рычагу подвески и располагаются вдоль рамы, не занимая места под капотом. Если торсион по причине износа начнет проседать, то его реально подтянуть, другие упругие элементы (рессоры, пружины) можно лишь заменить. Один из концов торсиона (этого стального стержня)жестко закреплен на раме или несущем кузове автомобиля, а на другом конце установлен рычаг. Усилие на свободном конце рычага создает момент, закручивающий торсион. Продольная и боковая силы на торсион практически не действуют, поскольку воспринимаются его опорами. Если сравнивать торсион с витой пружиной подвески, широко применяемой в подвесках современных авто, то можно заметить, что характер деформации материала в этих упругих элементах совершенно идентичен. Для подтверждения этого обстоятельства рассмотрим половину обособленного витка пружины. При возрастании общей силы сжатия пружины к концам такого полувитка приложена пара сил, создающая в сечении закручивающий момент. Характер деформаций стержня торсиона подобен деформации материала пружины. Вертикальная сила, действующая на рычаг подвески, создает момент, закручивающий торсион. Следовательно, стержень торсиона можно рассматривать как витки пружины, растянутые в одну линию. Получается, что при одинаковой длине и поперечном сечении прутка, из которого изготовлена пружина, и стержня торсиона характеристики их упругих свойств будут одинаковы. В то же время конструктивные возможности торсионов более широки, чем у витой пружины. Ничто не мешает сделать стержень торсиона составным. Обычно это набор плоских пластин, как и в листовых рессорах. Распространены также торсионы из многогранных стержней, собранных в пучок. Известны и конструкции из пучка круглых стержней, соединенных по концам. Витую же пружину почти всегда изготавливают из сплошного круглого стержня, поэтому, при равных с торсионом диаметре и длине жесткость пружины оказывается больше, а долговечность ниже.

Упругие элементы в виде пружин и торсионов используются в независимой передней подвеске легковых автомобилей.

Подвеска может быть рессорной, пружинной, торсионной и  пневматической.

Пневматическая подвеска - подвеска, в упругих элементах которой используется сжатый газ, обычно воздух. Пневмоэлементы обеспечивают отличную плавность хода и возможность изменять положение кузова над дорогой. Обычно применяются системы, автоматически поддерживающие заданное положение кузова над дорогой вне зависимости от загрузки. Пневмосистемы конструктивно сложны и включают в себя сами пневмобаллоны, компрессор, ресивер, блок управления. Естественно, надежность таких подвесок ниже по сравнению с обычными.

Рычаг подвески - элемент подвески автомобиля - часть направляющего устройства подвески колеса в виде рычага, один конец которого прикреплен к кузову (раме), а второй - к колесу. Обеспечивает вертикальное (вверх-вниз) перемещение колеса, относительно кузова, ограничиваемое пружиной подвески, и передает усилия от колеса на кузов (или раму). Рычаги подвески могут быть: диагональными, поперечными и продольными; стержневыми и треугольными (А-образными).

 

 


Очень важным составляющим элементом подвески автомобиля являются амортизаторы.
По-английски – shock absorbers, что в буквальном переводе означает «поглотители колебаний». Если бы в подвеске были только пружины, то автомобиль после каждой кочки прыгал бы как резиновый мячик.
Современный амортизатор представляет собой телескопический элемент, который можно сжимать и разжимать, при этом он сопротивляется с усилиями, заданными его техническими характеристиками. У амортизатора могут быть разные усилия сопротивления при сжатии и отбое. Настраиваются эти усилия, как правило, раз и навсегда на заводе, путем подбора клапанов и отверстий, через которые протекает специальное масло. Существуют специальные амортизаторы с регулировкой жесткости. Иногда с раздельной, для хода сжатия и хода отбоя. От настроек и состояния этих узлов очень сильно зависит управляемость транспортного средства. Один и тот же автомобиль, с различными амортизаторами в подвеске, может вести себя абсолютно по-разному. Износ амортизаторов тоже может сильно сказаться на поведении транспортного средства.

 

Тормозная система

Рабочая тормозная система приводится в действие нажатием на педаль тормоза, которая располагается в ногах у водителя (исключение — автомобили для обучения принципам вождения, дополнительная группа педалей располагается в ногах у инструктора). Усилие ноги водителя передаётся на тормозные механизмы всех четырёх колёс. Тормозные системы также делятся по типам приводов- механический, гидравлический, пневматический и комбинированный. Так на легковых машинах в основном используются гидравлический привод, а на грузовых пневматический и комбинированный. Для уменьшения прикладываемого усилия на педаль тормоза устанавливается вакуумный или пневматический усилитель тормозов.

Стояночная тормозная система слу­жит для удержания транспортного средства неподвижно на дороге. Используется не только на стоянке, она также применяется для предотвращения скатывания транспортного средства назад при старте на подъёме.Стояночная тормозная система приводится в действие с помощью рычага стояночного тормоза. Водитель рукой может управлять тормозными механизмами задних колёс.

Вспомогательная тормозная система служит для длительного поддержания постоянной скорости (на затяжных спусках) за счёт торможения двигателем, что достигается прекращением подачи топлива в цилиндры двигателя и перекрытием выпускных трубопроводов.

История развития тормозных систем автомобиля

 

 

Колодочный тормоз на карете.

Первые тормозные системы применялись ещё на гужевом транспорте. Лошадь разгоняла повозку до относительно больших скоростей и сама не справлялась с ее остановкой. Первые механизмы тормозили само колесо посредством ручного рычага или системы рычагов. Деревянная колодка, иногда — с обитой кожей поверхностью прижималась к ободу колеса, затормаживая его. В сырую погоду это было малоэффективно.

С тех пор тормозной механизм прошел серьезную эволюцию. Наибольшее развитие в разработке тормозных систем произошло с появлением автомобиля.

 

 

Колодочный тормоз на велосипеде.

Первые автомобили использовали тот же самый колодочный тормоз, что и конные экипажи. Например, на первых автомобилях Бенца колёса тормозились именно колодками, обитыми кожей. Это было малоэффективно, к тому же кожа быстро истиралась, и на протяжении поездки порой приходилось несколько раз менять кожанные накладки. Усовершенствованный вариант этого механизма используется до сих пор на наиболее простых и малоскоростных велосипедах, правда колодки теперь делают из металла, накладки — из фрикционного материала, и располагают их по бокам от обода колеса (на более дорогих и скоростных моделях используют уже дисковые тормоза).

 

 

Барабанные тормоза старинного автомобиля с механическим приводом (барабаны сняты, открывая колодки и механизмы их привода).

Уже в начале XX века серийные легковые автомобили стали развивать скорость более 100 км/ч час, что сделало жизненно необходимым наличие эффективной тормозной системы. Первыми по-настоящему эффективными были барабанные тормозные механизмы, принцип действия которых мало изменился до наших дней. В отличие от более ранних систем, которые использовали участок деревянного обода самого колеса, в барабанных тормозах тормозные колодки полукруглой формы прижимались к внутренней поверхности чугунного барабана. Накладки стали делать из более износостойкого материала на основе асбеста.

Барабанные тормозные механизмы просуществовали в практически неизменном виде вплоть до сороковых-пятидесятых годов.

 

 

Барабанный тормозной механизм с гидроприводом и одним двусторонним гидроцилиндром.

За это время существенно изменились системы привода тормозов. Если ранние их варианты полагались на механический привод — сначала тягами, а позднее проложенными между закреплёнными на раме шкивами тросами (вроде тех, которые в наши дни приводят в действие стояночный тормоз) — то начиная со второй половины тридцатых… сороковых годов общепринятыми становятся гидравлические тормозные системы (первые серийные автомобили с ними появились ещё во второй половине двадцатых), в которых тормозные механизмы приводились в действие через длинные системы трубок, заполненных гидравлической жидкостью — изначально изготовлявшейся на основе растительного масла. Примерно в те же годы появляются и первые системы сервоприводов, снижавших усилие на педали тормоза.

Кроме того, начиная с конца десятых… начала двадцатых годов тормозами стали в обязательном порядке снабжать все колёса — и передние, и задние. Пионеры автомобилестроения считали, что автомобиль с передними тормозами при замедлении станет неустойчивым, и ставили их только на задней оси. Впоследствии выяснилось, что автомобиль с передними тормозными механизмами при условии их правильной регулировки вполне управляем при торможении, более, того — расположенные спереди тормоза ощутимо более эффективны.

 

 

Спортивный автомобиль сороковых годов с задними тормозами, расположенными у главной передачи.

В пятидесятых годах ввиду существенного роста мощности двигателей появилась необходимость значительного повышения эффективности тормозов серийных автомобилей.

Помимо внедрения в тормозные системы всевозможных усилителей (как правило — либо гидровакуумных, в которых разрежение во впускном коллекторе при помощи специального механизма воздействовало на тормозную жидкость, повышая эффективность торможения, либо вакуумных, где разрежение во впускном трубопроводе двигателя непосредственно воздействовало на связанный с педалью шток), стали совершенствоваться и сами тормозные механизмы.

 

 

Барабанный тормозной механизм с двумя ведущими колодками (дуплексный).

Первым существенным улучшением в конструкции барабанного тормоза стало появление механизма с двумя раздельными гидроцилиндрами и двумя ведущими колодками (дуплексного). До этого гидроцилиндр был один и раздвигал он сразу обе колодки, что было существенно менее эффективно.

Скорости движения автомобилей росли. Самые мощные серийные автомобили пятидесятых годов имели максимальную скорость, приближающуюся к 200 км/ч. При длительном торможении с большой скорости тормозные механизмы перегревались и теряли эффективность. Ответным шагом конструкторов стало появление алюминиевых тормозных барабанов (с запрессованными в них чугунными кольцами, к которым непосредственно прижимались колодки), обеспечивавших лучший отвод тепла, а также введения служившего той же цели оребрения на их поверхности (вентилируемые барабанные тормоза).

Со временем тормозные колодки изнашиваются и начинают слабее прижиматься к поверхности барабана, чем существенно снижается эффективность торможения. Для предотвращения этого эффекта в барабанных тормозах были предусмотрены механизмы (эксцентрики), позволяющие в процессе регулировки немного сместить оси тормозных колодок, восстановив их контакт с поверхностью барабана при торможении («подвести» тормоза). Однако такие механизмы требовали постоянной регулировки, причём добиться равномерного торможения всеми четырьмя колёсами при этом было сложно. Решением проблемы стало внедрение гидроцилиндров с особой конструкцией, обеспечивавшей «самоподвод» тормозных механизмов. Это не только избавило владельца от весьма частой регулировки тормозов автомобиля, но и существенно повысило безопасность, так как при исправном механизме исключалась возможность неправильной регулировки или пренебрежения ей. Тем не менее, ещё долгое время многие автомобили не имели такой системы. Например, советский вариант Fiat 124 — ВАЗ-2101 не имел «самоподвода» задних барабанных тормозных механизмов, как и многие бюджетные еврпейские автомобили тех лет (а вот «Москвич-408/ 412» и «Волга» ГАЗ-24 — уже имели).

Однако, все эти меры оказались недостаточными — на рубеже пятидесятых и шестидесятых годов наметилось явное несоответствие динамических и тормозных возможностей автомобилей. Тормозные системы попросту не успевали за стремительным ростом мощности моторов, что особенно явно было заметно в США, где во всю разгоралась «гонка лошадиных сил» — каждый производитель старался представить на рынке более мощную машину, чем у конкурентов, что привело к тому, что редкий американский автомобиль имел в те годы менее шести цилиндров и 100 л.с.

 

 

Дисковый тормозной механизм.

Поэтому в конце пятидесятых — начале шестидесятых на быстроходных серийных автомобилях стали появляться тормозные механизмы принципиально иного типа — дисковые. Ранее они находили применение в основном на гоночных конструкциях и авиации. В таком механизме колодки прижимались не к внутренней поверхности барабана, а к наружным плоскостям чугунного диска.

Такой механизм конструктивно проще барабанного с автоматической регулировкой зазора, компактнее, легче и дешевле.

Он эффективнее, несмотря на меньшую площадь колодок, благодаря тому, что поверхность диска плоская и колодки прижимаются к нему равномерно (полукруглая поверхность колодки барабанного тормоза же неравномерно прижимается к внутренней поверхности барабана). Он проще в обслуживании (в частности — проще замена колодок), практически не ограничивает тормозное усилие на колодках (в барабанном механизме оно ограничено прочностью барабана).

Дисковые тормоза лучше охлаждаются, потому что воздух может свободно циркулировать между диском и поверхностью колодки. Существуют также вентилируемые диски, у них фрикционных поверхностей две. Они разделены перемычками, которые позволяют воздуху попадать внутрь диска и еще лучше отводить тепло от тормозов. Большинство передних дисковых тормозов на современных машинах — именно вентилируемые, потому что как раз на них приходится большая часть работы при остановке автомобиля. При этом большинство задних тормозов — не вентилируемые. Они имеют сплошной диск, потому что задние тормоза просто-напросто не вырабатывают большого количества тепла.

Другим плюсом дисковых тормозов является то, что они самоочищаются от воды, грязи и продуктов износа — загрязнения и газы «сбрасываются» с диска при его вращении, в отличие от барабана, который легко собирает на себя, например, пыль — продукт износа колодок. Вода, масло, газообразные продукты трения — всё это быстро отводится от рабочих поверхностей, не ухудшая торможение.

Главными же преимуществами дисковых тормозов перед барабанными считают постоянство (стабильность) характеристик и широкие возможности для регулировки их работы, что приводит к улучшению торможения, а в конечном итоге — повышению безопасности движения.

 

 

Вакуумный сервопривод педали тормоза получил массовое распространение именно после внедрения дисковых тормозов, так как они в силу своей конструкции требуют большего усилия на педали.

Характерны для них и определённые недостатки. Площадь их колодок получается сравнительно небольшой, что вызывает необходимость повышения давления в тормозной системе. Это означает рост усилия на педали тормоза и увеличение износа колодок, что вызывает их частую замену.

В барабанном тормозном механизме эффективность работы повышается за счёт вращения барабана при движении автомобиля, которое при торможении стремиться ещё сильнее прижать к нему колодки («увлекая» их за собой и дополнительно проворачивая их вокруг своих осей), в итоге также уменьшая необходимое усилие на педали тормоза (водителю достаточно легкого нажатия на педаль чтобы колодки коснулись барабана, после чего этот эффект начинает работать как своеобразный «усилитель») — на дисковых тормозных механизмах такой эффект совершенно отсутствует, так как диск вращается в направлении, перпендикулярном к направлению действия тормозного усилия. Поэтому автомобили с дисковыми тормозами, особенно на всех колёсах, в абсолютном большинстве случаев снабжаются сервоприводом (усилителем) тормозов — без него усилие на педали было бы чрезмерно велико.

Кроме того, с дисковым тормозным механизмом сложнее организуется привод стояночного (ручного) тормоза, ввиду чего долгое время на задней оси многих автомобилей продолжали использовать барабанные тормоза (иногда даже использовались механизмы с рабочими дисковыми и отдельным барабанным парковочным тормозом меньшего размера).

Основной же причиной столь позднего массового внедрения дисковых тормозов было то, что при значительно более высокой эффективности дисковые тормоза также выделают значительно больше тепла, чем барабанные. При использовании ранних образцов тормозных жидкостей на основе спиртов и растительного масла (касторового), при длительном торможении это приводило к закипанию тормозной жидкости в гидроприводе, образованию паровых пробок и «проваливанию» педали тормоза с потерей эффективности торможения, что было крайне опасно. Только с появлением более высококипящих тормозных жидкостей, например на гликолевой основе, стало возможным массовое применение дисковых тормозных механизмов. Применение старых марок тормозных жидкостей на масляной основе в таких тормозных системах было существенно ограничено или полностью исключено.

Ещё одним большим минусом дисковых тормозов можно назвать то, что они из-за своей открытости подвержены загрязнениям, несмотря на эффект «самоочищения». Грязь и пыль, всё же попадающие между диском и колодкой, могут быстро привести диск в негодность. Если он слишком тонок, он не способен рассеивать тепло и в экстремальных ситуациях может просто треснуть. Поэтому за износом дисков нужно следить и в случае необходимости заменять их.

Именно по этой причине барабанные тормоза считаются более пригодными для тяжёлых условий эксплуатации по бездорожью или запылённым просёлочным дорогам. Например, на ВАЗ-2101 конструкторы поставили задние барабанные тормоза, хотя на итальянском прототипе Fiat 124 они были дисковыми: лучшая тормозная динамика версии с дисковыми тормозами просто не была бы востребована в СССР, где остальные автомобили в те годы имели худшую тормозную динамику и барабанные тормоза без усилителя, а на дорогах всё ещё имелись в больших количествах даже довоенные модели с механическим приводом тормозов; а вот к тяжёлым дорожным условиям страны барабанные тормоза были более приспособлены, да и замена колодок на них требовалась существенно реже, что также было большим плюсом в тогдашних условиях. По тем же причинам долго ставили на автомобили барабанные тормоза и, например, в Австралии, также не отличавшейся идеальными дорогами, а также на внедорожниках.

Передние тормозные диски находятся в относительно благоприятных условиях, а вот задние принимают на себя всю грязь, которую отбрасывают назад передние колеса. Вот почему задние тормозные колодки и диски часто изнашиваются быстрее передних (на том же Fiat 124 в отечественных дорожных условиях задние тормозные колодки снашивались до металла за 500—600 км пробега), хотя на них приходится намного меньшая доля работы во время торможения.

В случае использования задних дисковых тормозных механизмов использование стояночного тормоза при отрицательной температуре воздуха необходимо исключить, так как часты случаи примерзания колодок к диску. Барабанный механизм лучше герметизирован и как правило меньше подвержен этому.

Изначально дисковые тормоза устанавливали, как правило, и на переднюю, и на заднюю ось. В частности, именно так поступала фирма Fiat — один из пионеров внедрения «дисков». По мере того, как дисковые тормозные механизмы входили в широкий обиход и становились доступны хотя бы как дополнительное оборудование на сравнительно недорогих автомобилях, стали появляться и тормозные системы с передними (как более важными и эффективными) дисковыми и задними барабанными тормозами, несмотря на очевидную несбалансированность.

Существовали различные конструкции дисковых тормозных механизмов — двух- и четырёхпоршневые, с неподвижной и плавающей скобой, вентилируемые, и так далее.

Впоследствии и до настоящего времени конструкция дисковых тормозов принципиально не менялась.

Тормозные диски с перфорацией (просверленными в дисках отверстиями) — отчасти просто украшение, однако не совсем бесцельное: отверстия позволяют воде и газам, находящимся между поверхностью колодок и поверхностью диска, «забиваться» в них, и тормоза таким образом срабатывают быстрее, не ожидая лишнего поворота диска, очищающего его. Это может быть важным в ситуациях, встречающихся в автоспорте, однако при повседневной городской езде, как правило, некритично. К тому же отверстия уменьшают площадь трущейся поверхности диска, а еще в них могут забиться мелкие камешки, что потребует лишней работы по их удалению.

Дисковые тормоза на всех колёсах стали стандартным оборудованием большинства легковых автомобилей на Западе уже к концу восьмидесятых годов.

На тяжёлых автомобилях — в первую очередь грузовиках и автобусах, а также на очень больших легковых производства США — долгое время использовались барабанные тормозные механизмы, особенно в задних тормозах, так как у них проще увеличить мощность тормозного механизма за счёт наращивания площади колодок — для этого наряду с диаметром просто увеличивают ширину барабана. С тормозными дисками же, увеличить мощность тормозного механизма возможно лишь за счёт роста их диаметра, который ограничен размерами ободов колёс. Поэтому получается, что барабанный тормозной механизм можно сделать намного мощнее в абсолютном выражении за счёт большой площади колодок, несмотря на его меньшую относительную эффективность по сравнению с дисковым.

Однако в последние десятилетия как раз в связи с необходимостью повышения эффективности тормозов наметилась тенденция к существенному увеличению диаметра колёсных ободов с целью размещения тормозных дисков большего размера, при одновременном сильно снижении высоты профиля шины. На современных легковых автмообилях не является редкостью применение ободов посадочным диаметром 16-17 дюймов, в некоторых случаях — до 22", и сверхнизкопрофильных шин с высотой профиля всего в несколько сантиметров. Это позволяет разместить тормозные диски вполне достаточной эффективности. Решёнными в настоящее время можно считать и проблемы с организацией привода стояночного тормоза при дисковых механизмах тормозов. Всё это открыло возможности для широчайшего использования дисковых тормозных механизмов всех колёс, которые в настоящее время являются в развитых странах стандартным оборудованием для абсолютного большинства легковых автомобилей за исключением наиболее бюджетных моделей. Появляются и дисковые тормозные системы для быстроходных грузовиков.

Вторым важным усовершенствованием, сделанным в шестидесятые годы, стало массовое распространение двухконтурных тормозных систем, в которых так или иначе предусматривалось разделение гидропривода на два независимых контура. При выходе из строя или снижении эффективности действия одного из них, второй обеспечивал достаточную эффективность торможения для того, чтобы добраться до ближайшего места ремонта. Начиная с конца шестидесятых — начала семидесятых годов такие системы были в больишснвте развитых стран включены в обязательные технические требования ко всем новым автомобилям.

 

 

Электронный датчик скорости вращения колеса, используемый в системе ABS.

 

 

Управляющий блок ABS.

В конце шестидесятых годов появляется ещё одно важное усовершенствование — антиблокироочная система тормозов — ABS (англ. Anti-lock Braking System). Эта система в её современном виде была разработана в США в конце шестидесятых годов фирмой Bendix и впервые появилась на автомобиля марки Imperial корпорации Chrysler в 1971 модельном году как дополнительное (опциональное) оборудование. Это была трёхканальная компьютеризированная электронная система. Аналогичные по функционалу механические системы находили весьма ограниченное применение и ранее (в авиации — с 1929 года), но они отличались низкой надёжностью и высокой ценой, вследствие чего не получили массового распространения на серийных автомобилях. В Европе аналогичные системы получили распространение ближе к концу семидесятых годов.

ABS стала актуальной в связи с массовым распространением вакуумных усилителей в тормозных системах и эффективных, быстродействующих дисковых тормозных механизмов, которые в сочетании легко позволяют при нажатии на педаль заблокировать колёсные тормозные механизмы. Колёса при этом прекращают вращаться и, как показали исследования, эффективность движения автомобиля при этом (движение «юзом», то есть, скольжение неподвижных колёс по асфальту) существенно уменьшается по сравнению со случаем, когда колёса медленно, но всё же катятся. Кроме того, очень важно то, что при этом машина становится неуправляемой — например, передние колёса практически не реагируют на руль, если они не катятся, а скользят.

ABS делает практически невозможной блокировку за счёт управляемого электронным блоком снижения давления в контурах колёс, подверженных в данный момент блокировке, таким образом поддерживая их «на грани» блокирования — торможение в этот момент считается наиболее эффективным. Тем не менее, ABS в определённых условиях (например на грязи, песке, гравии или глубоком слое снега) всё же может способствовать некоторому увеличению тормозного пути по сравнению со специально подготовленным водителем, использующем на автомобиле без ABS специальные приёмы торможения. Более важно, однако, то, что автомобиль с ABS не теряет управляемости во время торможения, его не заносит в одну сторону при блокировке одного из передних колёс. Также в системе тормозов с ABS отсутствуют сравнительно ненадёжные механические регуляторы давления, использующиеся в традиционной системе в контуре задних колёс.

В настоящее время происходит непрерывное дальнейшее совершенствование тормозных систем автомобилей, результатом которого становится дальнейший рост активной безопасности. Однако наиболее важным фактором безопасности, как и во все времена, остаётся всё же поведение водителя.

ABSBD

Приходилось ли вам объезжать внезапно возникшее препятствие и одновременно тормозить? Наверняка да. Казалось бы, что в этом сложного — нажал на тормоз, повернул руль и скорректировал траекторию. Однако всё относительно просто до определённого момента. Если при экстренном торможении нажать на педаль тормоза сильнее, чем необходимо, колёса могут заблокироваться и…

Дальше возможны два варианта развития событий. Оба обусловлены наличием или отсутствием антиблокировочной системы тормозов АБС (ABS — Anti-lock Brake System). Если машина архаичная, ведёт свою родословную из середины семидесятых прошлого столетия или сошла с конвейера одного из отечественных автозаводов, то, как бы усердно вы ни крутили «баранку», транспортное средство траектории не изменит. Дело в том, что заблокированные колёса, скользя, лишают водителя возможности маневрировать — сорвавшись на юз, автомобиль будет тупо ехать по прямой, будто у него отрубили руль. Лишь опытный пилот сумеет хладнокровно разблокировать колёса, на мгновение отпустив педаль тормоза. А затем, используя импульсное торможение, вернуть контроль и погасить скорость. Второй вариант — для машины, оснащённой АБС. От водителя требуется лишь посильнее нажать на педаль тормоза и спокойно работать рулём. Чувствуете разницу?

 

Блокировка опасна ещё и тем, что способна стать причиной заноса или увода автомобиля в сторону. Произойти это может, когда под колёсами разнородное покрытие, сильно изменена загрузка по осям в ходе предыдущего манёвра или стоят разные шины (последнее звучит дико, но в России, увы, не редкость). Кроме того, при заблокированных колёсах машина может изменить траекторию под действием любой боковой силы (уклон дороги или столкновение). Скорректировать траекторию в этом случае практически невозможно.

 

В АБС для определения скорости вращения используются индукционные датчики частоты и датчики, работающие на эффекте Холла. Каждое новое поколение колёсных датчиков частоты вращения становится меньше, точнее и надёжнее. Сначала устанавливался только один сенсор, который монтировался на редукторе заднего моста или КПП. Позже к нему добавились ещё два — на передних колёсах. И лишь в последних версиях АБС предусматривается установка датчиков на каждое колесо, соответственно, с индивидуальными модуляторами. Кстати, самые древние и примитивные одноканальные ABS воздействовали сразу на все тормозные механизмы.

Ещё один негативный эффект блокировки — увеличение тормозного пути. Здесь всё дело в том, что сила трения покоя обычно больше силы трения скольжения. Следовательно, для максимально быстрой остановки автомобиля нужно генерировать такую величину давления в тормозных магистралях, чтобы колёса при торможении вращались на грани блокировки. Есть такой немаловажный показатель, как относительное проскальзывание. Он в зависимости от степени заторможенности колеса может меняться от нуля (колесо катится без проскальзываний) до 100% (колесо полностью заблокировано). Экспериментально установлено, что максимальная эффективность торможения достигается при 15–20-процентном проскальзывании — то есть в том случае, когда скорость вращения заторможенного колеса на 15–20% ниже скорости свободновращающегося колеса при постоянной скорости движения машины. Забегая вперёд, скажем, что электроника при торможении поддерживает именно эту величину, периодически блокируя и разблокируя колёса.

В состав практически любой современной системы АБС входят: электронный блок управления (1), модулятор (2), изменяющий давление в гидравлических магистралях, датчики угловых скоростей вращения колёс (3), установленные на внутренней части ступицы колеса.

 

Прогрессивное человечество окончательно осознало вред заблокированных колёс лишь в 70-х прошлого века. Пионером в данной области стал Mercedes-Benz, совместно с компанией Bosch разработавший систему, которая в 1979 году стала устанавливаться на Мерседесы S-класса. Основной принцип работы АБС был сформирован именно тогда, и потом только совершенствовался.

 

Современная электроника (ABS, противобуксовочная система, ESP), чтобы держать под контролем поперечную и продольную динамику автомобиля, учитывает не только частоту вращения колёс. Подконтрольными являются угол поворота руля, степень крена кузова, ускорение… Давление в тормозных контурах генерируется по совокупности полученных данных, плюс в некоторых случаях принудительно изменяется тяга двигателя.

Задача ABS — регулировать скорость вращения колёс путём изменения давления в магистралях тормозной системы. Чтобы контролировать угловую скорость, надо знать её величину и то, как она меняется со временем. Каждое колёсо снабжено датчиком, который выдаёт электрические импульсы с частотой, пропорциональной скорости вращения колеса. Эта информация поступает в блок управления АБС.

Если во время торможения угловая скорость колеса приблизилась к нулю, электронный мозг тут же примет решение его «растормозить». Гидравлический модулятор при помощи электроклапана стравит давление из магистрали и перенаправит «лишнюю» порцию тормозной жидкости в гидроаккумулятор. Давление будет снижаться до тех пор, пока колесо, снова «ухватившись» за покрытие, не раскрутится до определённой скорости. Далее ABS опять резко увеличит давление в магистрали и притормозит колесо. Цикл продолжится до тех пор, пока машина не остановится или водитель не ослабит давление на педаль до положения, когда ABS не нужна.

 

Существующие на рынке системы отличаются весьма точной настройкой и обеспечивают максимальную эффективность торможения.

Многие скажут: «Невелика премудрость!» Прерывисто тормозить можно и самому. И правда: во многих случаях такой способ замедления на автомобилях, не оборудованных АБС, позволяет во время экстренного торможения объехать внезапно возникшее препятствие. Когда колёса блокируются — вы тормозите, как только «отпускаются» — получаете возможность корректировать направление движения. Естественно, при таком раскладе тормозной путь значительно увеличится, зато водитель получит возможность объехать препятствие и упреждающим действием руля погасить занос.

Но, к сожалению, ни один титулованный гонщик не способен обеспечить «порционное» торможение с частотой, с которой это делает ABS. Система (в зависимости от варианта исполнения) за секунду успевает заблокировать-разблокировать колёса около 15 раз. К тому же водитель одновременно воздействует на все тормозные механизмы (так работали первые системы ABS), в то время как современные 4-канальные антиблокировочные системы следят за скоростью вращения и регулируют тормозное усилие для каждого колеса отдельно.

 

В большинстве современных автомобилей ABS работает вместе с EBD (Electronic Brake Distribution) — системой распределения тормозных усилий, которая дозирует интенсивность торможения для каждого колеса. C EBD можно смело тормозить в повороте и на «миксте». Электроника по разности частот вращения поймёт, что колёса попали на участки с разнородным покрытием, и уменьшит тормозные силы на колёсах, которые имеют лучшее сцепление с дорогой. Кстати, интенсивность замедления в этом случае снизится и будет определяться силой трения колеса (колёс), имеющего наихудшее сцепление с дорогой.

Нелишне заметить, что для максимальной эффективности замедления педаль тормоза на автомобилях с ABS надо вдавливать в пол что есть силы. Впрочем, последнее делать не обязательно тем водителям, чьи машины оснащены системой Brake Assist, которая сама создаёт избыточное давление в тормозной магистрали, «дотормаживая» за слабого или нерешительного человека. При штатных замедлениях она не вмешивается. Однако резкое нажатие (удар) на педаль Brake Assist расценивает как сигнал к экстренному торможению и вступает в действие.

 

При торможении на разнородных покрытиях электроника сделает всё, чтобы противостоять заносу. Но иногда автомобиль, оснащённый ABS и EBD, может довольно сильно развернуть. Здесь всё зависит от того, как настроена система.

Но не всё так гладко. ABS, как и любая другая система, обладает недостатками. Например, простой «антиблок» может проиграть обычным тормозам на снегу, льду или песке, свести на нет преимущества шипованной резины. Ведь на льду шипы обеспечивают наибольшее замедление только при максимальном относительном проскальзывании, когда они словно когти впиваются в лёд и бороздят его. Каверза в том, что ABS, стремясь растормозить колёса, не даёт шипам работать и тем самым увеличивает тормозной путь. То же происходит на грунтовых дорогах (песок, щебень, глина) и покрытиях, занесённых снегом.

 

Наличие ABS не повод отказа от шипованной резины. Во время блокировки шипы всё равно будут цепляться за лёд и обеспечивать более надёжное замедление, нежели нешипованные покрышки.

Автомобили с ABS в этом случае имеют более длинный тормозной путь, потому что постоянно разблокирующиеся колёса не создают «эффекта плуга». А ведь именно на таких покрытиях заблокированные колёса имеют максимальную эффективность торможения — из-за того что нагребают перед собой «валики» из грунта или снега. Вот почему нужно помнить: на обледеневшей, заснеженной или грунтовой поверхности тормозной путь автомобиля, не оснащённого АБС, может быть короче.

 

Автомобили с ABS при экстренном торможении остаются управляемыми.

 

Подложить небольшую свинью АБС может и на неровной дороге. Если при торможении одно колесо на мгновение зависнет в воздухе и заблокируется, обманутая электроника начнёт спасать вас от заноса и тут же снизит давление в остальных магистралях. В повороте автомобиль неприятно вильнёт «хвостом», а тормозной путь увеличится. От таких случайных отрывов, в принципе, не застрахован никто, но нужно помнить, что залогом адекватной работы АБС является исправная подвеска.

При любой неисправности в системе на приборной панели загорается контрольная лампа. В этом случае совет один — бегом в сервис.

 

Прогресс рождает на свет всё более продвинутые системы. Оперирующие большим количеством показаний, они способны адаптироваться под тип дорожного покрытия и тормозить по одному из заранее заложенных эффективных алгоритмов. Конечно же, электронику нельзя воспринимать как панацею от всех бед, но статистика вещь упрямая: грамотно настроенная ABS при всех исправных системах автомобиля на сухом и мокром покрытии в среднем помогает экономить до 20% тормозного пути и оставляет водителю шанс маневрировать. Стоит ли говорить, что от этих драгоценных метров могут зависеть жизнь и здоровье?

 

 

Электронная система экстренного торможения (EBA)

Электронная система экстренного торможения EBA (Emergency Brake Assist) - электронная система управления давлением в гидравлической системе тормозов, которая в случае необходимости экстренного торможения и недостаточного при этом усилия на педали тормоза самостоятельно повышает давление в тормозной магистрали, делая это во много раз быстрее человека. А система EBD равномерно распределяет тормозные усилия и работает в комплекте с ABS - антиблокировочной системой.

Исследование показывает, что при экстренном торможении водители могут реагировать слишком медленно. Многие не готовы приложить достаточное усилие, которое необходимо для максимально эффективного торможения. В случае экстремальной ситуации, медленная реакция может привести к нехватке времени или расстояния, необходимого для безопасной остановки.

EBA предназначен для обнаружения таких "случаев" и обеспечения максимального тормозного усилия в течение миллисекунд - быстрее, чем мгновение ока. 

Если система определяет, что ситуация аварийная, то она автоматически производит полное торможение, что намного быстрее, чем если бы водитель это делал при помощи своей ноги. Благодаря этому тормозной пусть при экстремальном торможении заметно сокращается, что снижает вероятность несчастных случаев.

Предназначение системы экстренного торможения:

  • улучшение безопасность пассажиров и водителя  транспортного средства

  • сокращение тормозного пути (до 70ft на 125mph)

 

Система курсовой устойчивости

Электронный контроль устойчивости (также ЭКУ, ESC (англ. Electronic Stability Control) или ESP (нем. Elektronisches Stabilitätsprogramm)) — вспомогательная система автомобиля, изобретённая в 1995 году, позволяющая предотвратить начинающийся занос или снос посредством управляемого компьютером торможения одного (или нескольких) из колёс.

Эксперты называют ЭКУ самым важным изобретением в сфере автомобильной безопасности после ремней безопасности. Она обеспечивает водителю лучший контроль за поведением автомобиля, следя за тем, чтобы он перемещался в том направлении, куда указывает поворот руля. По данным американского Страхового института дорожной безопасности (IIHS), примерно одна треть смертельных аварий могла бы быть предотвращена системой ЭКУ, если бы ей были оснащены все автомобили[1].

С технической точки зрения ЭКУ можно рассматривать как расширенный вариант антиблокировочной системы тормозов (АБС), хотя её предназначение принципиально иное. Многие узлы объединены с системой АБС, но в добавок к её компонентам, ЭКУ требует наличие таких компонентов, как датчик положения руля и акселерометр, следящий за реальным поворотом автомобиля. При несоответствии показаний акселерометра показаниям датчика поворота руля, система применяет торможение одного (или нескольких) из колёс машины для того, чтобы предотвратить начинающийся занос.

Некоторые автопроизводители предлагают ЭКУ под торговой маркой ESP, которая принадлежит фирме Bosch, изобретателю и крупнейшему производителю систем ЭКУ.

В США требование оснащать все новые автомобили системой ЭКУ вводится с 2012 года, в Евросоюзе — с ноября 2011 для новых моделей автомобилей и с ноября 2014 года для всех новых автомобилей. Аналогичные законодательные меры предпринимаются также в Канаде и Австралии. В Израиле установка ЭКУ на новые автомобили обязяательна с 01.01.2010 г.

Антипробуксовочная система (АПС), Система контроля тяги (англ. Traction control system, TCS; Dynamic Traction Control, DTC) — электрогидравлическая система автомобиля, предназначенная для предотвращения потери тяги посредством контроля за пробуксовкой ведущих колёс.

Данная система существенно упрощает управление автомобилем на влажной или сырой трассе. С помощью датчиков в реальном времени отслеживается скорость вращения колёс и если обнаруживается начало пробуксовки одного из них, то система вычисляет наилучший вариант восстановления сцепления с дорогой. Широко применяется в автогонках, в Формуле-1 первой её стала использовать команда Ferrari в 1990 году. Позднее стала широко применяться в обычных серийных машинах, а в 2008 году была запрещена в Формуле-1.

Принцип действия

При помощи датчиков угловых скоростей, установленных на ступицах колёс, электронный блок отслеживает скорость вращения колёс при разгоне автомобиля. В случае, если обнаруживается резкое возрастание скорости вращения ведущего колеса (происходит потеря сцепления и пробуксовка), электронный блок управления предпринимает меры для снижения тяги и/или притормаживания сорвавшегося в пробуксовку. Для снижения тяги могут (в зависимости от реализации системы) использоваться следующие методы:

  • Прекращение искрообразования в одном или нескольких из цилиндров.

  • Уменьшение подачи топлива в один или несколько цилиндров

  • Прикрытие дроссельной заслонки для систем с электронным управлением дроссельной заслонкой.

Одновременно для восстановления сцепления с дорогой, а так же увеличения крутящего момента на противоположном относительно дифференциала колесе, производится кратковременное подтормаживание колеса, потерявшего сцепление при помощи электро-гидравлических актуаторов.

Система частично использует те же механизмы, что и антиблокировочная система, и система помощи при экстренном торможении (Brake Assist), поэтому зачастую автомобили, оборудованные антипробуксовочной системой, так же оборудованы и этими системами.

Как правило, на автомобилях, оборудованных антипробуксовочной системой, существует возможность временно её отключать. Но при обычном вождении этого делать настоятельно не рекомендуется, так как система помогает сохранить сцепление с дорогой и, как следствие, управляемость при разгоне.

Каркас безопасности.


 


 


 


 

Кузов любого автомобиля подвержен деформации, на него постоянно воздействуют внешние силы – дорога, инерция, боковой ветер и многое другое. При слишком сильном воздействии кузов может стать непригодным для эксплуатации. Многим, кто ездил на отечественных машинах, знакома ситуация, когда заклинивает двери после долгой стоянки на неровной поверхности, например на домкрате или когда два колеса на дороге, а два – на бордюре. Качественный автомобиль отличается высокой жесткостью на скручивание, а если она небольшая, то у него ухудшается управляемость, он быстро изнашивается.

Жесткость кузова зависит от его типа: самые стойкие – купе и трехдверные хэтчбеки, благодаря своей форме они лучше всего противостоят изгибам в поворотах, а наименее жесткие – универсалы и микроавтобусы. Во время эксплуатации автомобиля при невысокой жесткости нарушается работа передней и задней подвесок из-за размягчения металла в местах крепления рычагов подвески. Разрушение кузова происходит постепенно – сначала отслаиваются сварочные швы, в местах их разрыва образуется коррозия, появляется ржавчина.

В спортивных автомобилях устанавливают каркасы – они защищают пилота и усиливают жесткость кузова. Около 14 лет назад каркасы стали обязательным условием для участия в автомобильных соревнованиях. Каркас – это система соединенных между собой стальных холоднотянутых бесшовных труб. Трубы бывают главными и предохранительными. После установки защитных дуг к весу автомобиля прибавляется 40-50 кг, из-за чего увеличивается время разгона. Каркасы делятся на две категории – профессиональный (омологированный) и любительский (неомологированный). Первый дает возможность быть допущенным на официальные гонки, хотя последнее время все чаще встречаются смешанные варианты. Самостоятельное же изготовление каркаса зачастую приводит к плачевному результату – неправильные расчеты и работа с подручными инструментами не гарантируют безопасность пилоту, скорее наоборот. Способы установки также можно разделить на два вида: вварной – дуги ввариваются в силовую структуру кузова, и разборный – каркас присоединяется к установленным в кузове петлям болтами, такой каркас легко деинсталлировать.

Эксплуатация автомобиля с установленным каркасом обязывает пилота использовать ремни, крепящиеся на нескольких точках, которые при ударе оказывают на тело человека сильные нагрузки. Гражданские поездки по городу или трассе усложняются ухудшением обзорности и неудобствами при посадке и высадке из машины. Однако защитные дуги уберегают водителя от переломов и ранений во время аварии, если каркас сделан не для красоты, а для дела. Но при аналогичных ситуациях в городских условиях пилот рискует отправиться на больничную койку вместе с пассажиром, так как установка каркаса исключает работу подушек безопасности. Многие неудобства можно было бы потерпеть, но еще один минус каркаса в том, что при его наличии будет очень сложно пройти технический осмотр в ГАИ.

 

 

 

 

 

 

Подушки безопасности

 

 

Общие сведения

 

Пассивная безопасность автомобиля — комплекс технических решений в его конструкции, уменьшающих тяжесть последствий аварии для человека.

Основа защиты людей — части кузова, деформирующиеся при ударе и поглощающие его энергию, травмобезопасные (мягкие, без острых углов, ребер, кромок и т.п.) детали интерьера автомобиля, а также правильно отрегулированные и пристегнутые ремни безопасности. Эти неотъемлемые части машины помогут в любом случае, хочет того человек или нет (ремнями он обязан пристегиваться).

Действующие нормативные документы устанавливают лишь критерии тяжести повреждений людей при столкновениях в заданных условиях — по направлению удара, скорости, положению препятствия и т.п. Способы выполнения этих требований не регламентированы.

Система SRS при столкновении автомобиля удерживает человека на месте, чтобы, бесконтрольно перемещаясь по салону, водитель и пассажиры не травмировались друг о друга или о детали кузова и интерьера.

SRS, как правило, состоит из ремней безопасности, модулей подушек, датчиков, блока управления.

Ремни — непременная и основная часть SRS. При ударе они фиксируют человека на сиденье.

Подушки безопасности (air bag) — рассчитаны на обязательное пристегивание людей и замедляют их движение при столкновении, смягчая удары о руль или элементы интерьера.

Подушки располагают:

  • фронтальные (рис. 1) — в ступице рулевого колеса (для водителя) и в панели приборов (пассажирская). Они защищают голову и верхнюю часть тела (грудь, плечи) человека. На современных машинах объем подушки водителя — около 50 л, а переднего пассажира — 80-90 л, поскольку ее опора — панель приборов — дальше от человека, чем рулевое колесо;

    Рис. 1. Фронтальные подушки безопасности.

    Рис. 2. Боковые подушки безопасности в спинках передних сидений.

  •  

  • боковые — сбоку в спинках или подушках сидений (рис. 2), а также над дверными проемами (“занавески”). Они дополняют фронтальные, а иногда предохраняют живот и таз;

  • напольные и коленные — на полу и в нижней части панели приборов, чтобы обезопасить, соответственно, колени и ступни.

Датчики формируют и передают сигналы блоку управления. Они могут быть механическими или электронными. Их совмещают с модулем подушки или блоком управления либо датчики фронтального удара закрепляют на лонжеронах и бокового — на порогах около средних стоек кузова. Чем совершеннее система, тем больше датчиков (например, по одному в центре салона, около передних и задних сидений) или они сложнее, вплоть до реагирующих на удары с нескольких направлений или опрокидывание. В современных автомобилях датчики часто совмещают с блоком управления.

Блок управления анализирует показания датчиков и управляет работой всей системы (в нужный момент активирует подушки, преднатяжители ремней и т.п.). Кроме того, он диагностирует систему и информирует водителя об ее состоянии. Для этого в комбинации приборов есть сигнализатор (контрольная лампа).

Блок управления располагают в наиболее защищенном месте — как правило, на туннеле пола под панелью приборов или около рычага управления коробкой передач.

Особенности работы SRS

Подушки. Нормативных документов на конструкцию подушек безопасности или параметры их срабатывания пока нет ни в России, ни в мире. Современная подушка — это модуль, объединяющий оболочку и наполняющее устройство.

Раскрываясь, оболочка разрывает декоративное покрытие деталей интерьера, за которыми она установлена (ступицы рулевого колеса, панели приборов, обивки сидений и т.п.).

Система работает при положении ключа зажигания “ON” (включено) или “START” (пуск).
Время срабатывания, например самых распространенных систем, одновременно раскрывающих лишь фронтальные подушки водителя и переднего пассажира, и только при лобовых ударах, должно быть минимальным, но реально — 40-50 мс (0,04-0,05 с). Оно зависит от быстродействия системы, а также от конструкции кузова и размещения агрегатов автомобиля — величины и жесткости его деформируемых зон. А сдувается оболочка через 4-9 с после раскрытия. Человек должен попасть в уже расправленную подушку (фото 1). Иначе оболочка ударит его, раскрываясь навстречу со скоростью 270-300 км/ч, или отбросит в сторону, дополнительно стукнув о детали интерьера.

Фото 1. Правильная работа SRS — подушка полностью раскрыта, но опадать не начала; человек по инерции летит в нее.


Ремни безопасности (иногда с преднатяжителем) удерживают и направляют водителя и пассажиров, чтобы они начали перемещаться не раньше 30 мс после столкновения и не попали мимо подушки. Ведь даже уперевшись руками и ногами, человек массой 75 кг может выдержать усилие только 300-400 кгс. А при столкновении на скорости 50 км/ч его тело давит на ремень с силой 3 т! Поэтому непристегнутым людям подушка не поможет.

Датчики удара реагируют на замедление при столкновении. Порог их срабатывания, как правило, около 15 g. При заносе или торможении, даже экстренном, такой величины достичь невозможно.

Блок управления как минимум учитывает не только величину, но и длительность сигнала. На отдельные пики (всплески) замедления блок не среагирует, заданный порог должен быть превышен некоторое время (например, не менее 0,003 с). Для уменьшения риска ошибочных срабатываний системы, разработчики часто делают блокировку по скорости движения автомобиля, например 20 км/ч — чтобы толчки бампером на парковке не активировали SRS. Однако при этом она может не защитить людей, если в их стоящую или медленно катящуюся машину “в лоб” врежется другая — движущаяся на большей скорости. Но современные блоки распознают и такие ситуации.

Направление и сила удара. Фронтальным (лобовым) система, как правило, считает столкновение в секторе I (рис. 3), а боковым — II, в том числе и толчок в колесо. Если SRS запрограммирована только на удары спереди и сбоку, при опрокидываниях и наездах сзади подушки будут бездействовать.

Рис. 3. Направления и зоны ударов, на которые реагирует система SRS.


Системы, учитывающие силу удара, присутствие на сиденьях людей (и даже их массу), раскрывающие оболочки частично (в два этапа) или активирующие фронтальные подушки при ударе сзади (чтобы парировать отскок головы человека от подголовника), пока еще редки.


 

Определение укомплектованности машины SRS

 

На автомобиле с подушками безопасности обязательно должны быть обозначения на всех элементах системы — это требование Правил ЕЭК ООН. Рельефные надписи “air bag” и (или) “SRS” делают непосредственно около подушки — на ступице рулевого колеса (фото 2), панели приборов, на боковой поверхности спинки переднего сиденья (рис. 4), над дверными проемами. Предупредительные надписи (или этикетки) часто располагают на противосолнечных козырьках (фото 3), торце панели приборов или в перчаточном ящике — “бардачке”.

 

 

Фото 2. Размещение надписей (а и б), обозначающих место расположения фронтальной подушки в ступице рулевого колеса.


 

 

 

Фото 3. Расположение предупреждающих надписей на противосолнечных козырьках: а — с лицевой стороны – указание о наличии подушек; б — с обратной – предупреждения.


 

Рис. 4. Предупреждающая надпись на боковине спинки переднего сидения.

Рис. 5. Этикетка, запрещающая ставить на переднее сиденье детское кресло, в котором ребенок сидит лицом назад.

Кроме того, в автомобиле с подушкой для переднего пассажира на видном месте наклеивают метку (рис. 5), запрещающую закреплять на этом сиденье детское кресло, обращенное назад (см. ниже). Иногда дополнительно на торце панели приборов или на передней стойке располагают кнопку отключения этой подушки.

В комбинации приборов есть сигнализатор (фото 4). При включении зажигания он загорается на 5-7 с (на некоторых автомобилях — мигает) и, если система исправна, гаснет.

 

 

Фото 4. Сигнализатор системы в комбинации приборов (а и б).

Дополнительный признак боковых подушек в сиденьях — обозначение (рис. 6) на ярлыке, пришитом к ленте ремней безопасности.

Рис. 6. Обозначение ремня безопасности, устанавливаемого на сиденьях с боковыми подушками: ремень — часть удерживающей системы (z), с креплением в трех точках (А), снабженный устройством поглощения энергии (е), оборудованный втягивающим устройством типа 4 (r4), обладающим множественной чувствительностью (m), с преднатяжителем (p) и в отношении которого выдано официальное утверждение на соответствие Правилам ЕЭК ООН № 16 (поправка 04) по типу конструкции под номером 042439.

Узнать, как и на какие (с каких сторон) удары реагирует SRS, можно только из руководства по эксплуатации автомобиля.

Признаки сработавшей или неисправной SRS:

  • рваные детали интерьера салона, за которыми могут быть подушки (их заклеивают, но следы, как правило, заметны);

  • разошедшиеся (или явно небрежные, восстановленные) швы обивки по наружным краям сидений;

  • различия рулевого колеса, сидений, декоративных деталей по цвету, тону, степени износа с общим стилем и состоянием интерьера;

  • сигнализатор не гаснет через 5-7 с после включения или загорается во время движения. Если он не горит при включении зажигания, возможно, его отключили вовсе, чтобы скрыть неисправность.

Ксеноновые ФАРЫ


 

Ксеноновые фары уже более десяти лет пользуются успехом у автомобилистов. Они активно вытесняют с рынка галогеновые фары. Яркий свет позволяет водителю видеть более четкие очертания поверхностей и предметов, попадающих под лучи ксеноновых ламп.

Первые автомобильные фары были подобны газовым горелкам – это были лампы на основе пропана. Пропан излучал свет путем горения в специальной стеклянной колбе. Их сменили лампы нового поколения – электрические вакуумные лампы накаливания. Но они тоже не отличались долговечностью и не были эффективным светильником. Требования к автомобильной оптике росли, поэтому вскоре были разработаны галогеновые и газонаполненные лампы. Они светили ярче своих предшественников и не поглощали много энергии. А к началу XXI века появились самые эффективные на данный момент фары – ксеноновые.

Ксеноном называют источник света, работа которого осуществляется с помощью газового разряда высокой интенсивности (Intensity Discharge (HID), около 25 киловольт). Ксеноновый комплект включает в себя две лампочки, два блока розжига, крепеж, провода и переходники. Лампа состоит из двух колб, внешней и внутренней, чтобы избежать резких смен температурного режима, загрязнения и разницы в давлении. Во внутренней колбе находится смесь газов, в основе которой ксенон (один из элементов таблицы Менделеева). От смеси зависят многие параметры, такие, как температура света, скорость розжига и т. д. К внутренней колбе подведены сверху и снизу два электрода. От блоков розжига подается большая разность потенциалов на электроды, возникшее электромагнитное поле провоцирует процесс ионизации частиц. Частицы постоянно сталкиваются друг с другом, часть энергии от удара превращается в свет.

Человеческий глаз лучше видит при дневном свете, которому аналогичен ксеноновый свет. При более тусклом «несолнечном» свете глазные мышцы работают активнее и быстрее устают. Галогеновая лампа может обеспечить цветовую температуру в 3200К, а дневной свет соответствует температуре 5500К. Получается, что галогеновые лучи отличаются от нормы более чем на 40%. Чем выше цветовая температура, тем хуже видимость в условиях плохой видимости.

Свет ксеноновых фар лучше пробивает туман и дождь, ложится на дорогу, а не на капли воды в воздухе. Во время длительной работы галогеновых ламп фара нагревается, из-за этого на ее поверхности грязь подсыхает и сложнее отмывается. Дело в том, что галогеновые лампы переводят в тепло около 35-40% мощности при потреблении 55 Вт. С ксеноновыми фарами все намного проще – они переводят в тепло около 10% света при мощности 35 Вт, за счет чего стекло фары не перегреется и не лопнет в случае попадания на него воды.

В Европе, к примеру, установка ксеноновых ламп должна обязательно сопровождаться установкой омывателя фар и автоматического корректора угла фар. Это необходимо для того, чтобы не слепить встречные автомобили. Возможно, и в России когда-нибудь введут подобные требования, так как немалое количество аварий случается из-за плохой видимости вследствие «ослепления» встречными ксеноновыми фарами, установленными абы как в дешевой мастерской (или самостоятельно в гараже).

Долговечность работы лампы заключается в отсутствии между электродами спирали, в связи с чем светоотдача не изменяется. Ксеноновые фары отличаются от галогеновых ламп накаливания: в первых свет исходит от дугового разряда, возникшего в результате воздействия электромагнитного поля, а во вторых источником света является нагретая вольфрамовая нить. Мощность ксенона превосходит галоген в два раза, а мощность потребления меньше почти в полтора раза. Обычно ксеноновые фары служат около 3000 часов, а галогеновые – около 400. Разница в том, что газ «выдыхается» дольше, чем перегорают нити накаливания. Кроме того, нити накаливания в галогене подвержены и механическим повреждениям.

Раньше старые фары полностью заменялись на укомплектованные ксеноновым комплектом, что влияло на время и стоимость работ. Теперь в галогеновые фары вживляют ксенон без конструктивных изменений, достаточно лишь заменить лампу и установить рядом с фарой блок розжига. Для этой работы используются новые ксеноновые лампы с цоколем, переделанным под галогенные цоколя ламп, используемых в автомобильной оптике.

Есть и несколько заблуждений, касающихся ксенона. Многие у нас в стране считают, что достаточно просто поменять обычные лампы на новые. Но в таком случае пучок света в ксеноновых фарах направлен немного в другом направлении, чем в галогеновых. В соответствии с ГОСТ Р 51709-2001 «Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки» нельзя использовать штатный отражатель для распределения пучка света. Из-за этого фары слепят встречных водителей, а эффективность освещения снижается.

И самый распространенный миф о ксеноновых фарах – якобы они излучают много ультрафиолетовых лучей, что приводит к ухудшению зрения. Это утверждение неверно, так как ультрафиолетовое излучение практически не проходит через стекло колбы, которая фильтрует его.


 

 

Датчики давления в шинах

 

 

 

Внутренние датчики давления и температуры, цветовая индикация, питание от прикуривателя

TPMS CRX-1001

 

 

Внешние датчики давления и температуры, ЖК дисплей, автономное питание

TPMS CRX-1002

 

 

Внутренние датчики давления и температуры, ЖК дисплей, автономное питание

TPMS CRX-1003

 

 

Ремонтный датчик для TPMS CRX-1001

TPMS CRX-1001R

 

 

Ремонтный датчик для TPMS CRX-1002

TPMS CRX-1002R

 

 

Ремонтный датчик для TPMS CRX-1003

TPMS CRX-1003R

 

 

Сменный колесный вентиль для TPMS CRX-1001

TPMS CRX-1001V

 

 

 

Посмотреть сертификат соответствия на TPMS
Посмотреть сравнительную таблицу TPMS
Просмотреть справочную таблицу рекомендованного давления в шинах

 

TPMS*- (Tire Pressure Monitoring System) - система контроля давления и температуры в шинах автомобиля. Данная система состоит из набора автономных датчиков температуры и давления и информационного блока с дисплеем, располагающимся непосредственно в салоне автомобиля, на который выводятся показания датчиков. Система контроля над давлением и температурой в шинах поможет Вам сэкономить деньги и время, но самое главное - она может подарить Вам безопасность и ощущение уверенности на дороге! 

 

Почему необходим постоянный контроль температуры и давления в шинах?
По данным статистики 85% автовладельцев не проверяют давление в шинах. Почему же так важно проверять давление? На глаз определить разницу в шинах на несколько десятых бар практически невозможно. А, между тем, по результатам исследований разница в 0,3 - 0,4 бар для ведущих передних колес или 0,5 - 0,7 бар для задних колес явялется критической! Что означает "критическая разница"? Это означает, что Вы не можете быть уверенными в реакции автомобиля на разгон, торможение или изменения направления. Более того - неправильное давление в шине может привести к её взрыву! А знаете ли Вы, что без постоянного контроля давления в шине она может запросто взорваться прямо на ходу? Вы меняете резину весной - при этом температура не привышает и +2…+5 градусов. А летом наступают дни, когда воздух прогревается вплоть до +30. Следовательно - если при +2х у вас было давление 2 атмосферы, то в +30 - может получиться и 3, и даже 4 атмосферы, в зависимости от свойств резины и времени нагрева. Каждый год из-за проблем с давлением в шинах в мире гибнет 660 человек и 33 000 получают травмы! Неправильное давление в шине несет не только угрозу безопасности, но и чисто экономические потери. Из-за проблем с давлением в шинах расход топлива увеличивается примерно на 1,2 литра на 100 километров пройденного пути. Что при среднегодовом пробеге в 20 000 километров дает излишний расход в 240 литров бензина! Из-за излишнего или наоборот недостаточного давления в шине срок её службы уменьшается на 25-30%. Плюс ко всему - страдает подвеска вашего автомобиля! Что касается контроля над температурой в шинах - это не менее важно, чем контроль над давлением! Изменение температуры в одном из колес во время движения может быть вызвано неполадками в тормозной системе (перегрев тормозных колодок, дисков/барабанов) или ходовой части. Можно сказать, что контроль над температурой в шинах - это превентивная мера диагностики ходовой части (например - по различной температуре в колесах можно определить необходимость проведения развала-схождения).

Не стоит забывать, что владельцам шин RunFlat использование датчиков давления просто обязательно.

 

Как работает система контроля давления и температуры в шинах?
Система начинает считывать показания датчиков давления и температуры в шинах при включении зажигания автомобиля. Причем делает это одновременно во всех шинах. Что немаловажно, так как повышает наглядность показания приборов, а значит - Вы будете меньше отвлекаться от дороги! Данные с датчиков информационный блок получает по радиосигналу. Система сравнивает полученные данные с интервалом значений, заданным заводом-изготовителем или Вами лично. Если отклонений не обнаружено, система переходит в пассивный режим слежения, при этом на экране устройства отображаются текущие значения температуры и давления в каждом из колес. Система постоянно, с некоторым интервалом, обновляет показания датчиков. Если во время движения ситуация изменяется - звучит звуковой (или цветовой - на ваш выбор) сигнал, предупреждающий об опасности, и на экране устройства отображается какие и в каком колесе произошли изменения.

 

Новое поколение датчиков.
Мы представляем Вам новое третье поколение датчиков TPMS. Важные отличия третьего поколения:

  • Показывает состояние всех четырех колес одновременно.

  • Показывает не только давление, но и температуру внутри шин.

  • Для крепления внутренних датчиков используются металлические мундштуки вместо резиновых, используемых ранее, что облегчает процесс установки на шиномонтаже и повышает надежность.

  • Уменьшен вес датчиков (35 грамм для внутренних, 10 грамм для внешних) - что значительно упрощает процесс балансировки колеса.

  • Раньше при выходе из строя одного датчика, заменять нужно было всю систему, при этом отключить её можно было только на сервисе - сейчас эта проблема решена, и каждый датчик может быть заменён отдельно.

Внутренние или внешние?
По способу установки датчики давления и температуры в шинах разделяются на внутренние и внешние.

  1. Внутренние датчики - крепятся непосредственно на диск вместо мундштука. Внутри датчика - элемент питания, рассчитанный на 7 лет бесперебойной работы. Современные внутренние датчики имеют небольшой вес (примерно в три раза меньше, чем у датчиков предыдущих поколений!), так что их установка очень легка, и осуществить её смогут в любом шиномонтаже. Скоро наступит день перехода на летнюю резину - самое время обзавестись системой с внутренними датчиками и сэкономить время и деньги на шиномонтаже!

  2. Внешние датчики - просто накручиваются на ниппель. Это удобно когда у вас несколько машин или вы занимаетесь "off-road" на своём джипе - переставить датчики с "шоссейной" резины на "внедорожную" не составит труда и займет всего несколько минут.

У всех представленных нами моделей датчиков предусмотрен режим работы от прикуривателя - это позволит Вам подключить их без нарушения целостности бортовой системы электропитания (а это одно из условий сохранения гарантии на новых автомобилях).

 

Отношение автопроизводителей к датчикам давления и температуры.
В США в 2002 году был принят закон об обязательном оснащении всех новых автомобилей, производимых на территории страны, системами TPMS. В 2003 году принят закон, обязывающий оснащать ими все автомобили, продаваемые на территории США. Подобные законы с 2009 года вводятся на территории Австралии, Японии и Южной Кореи. В Европейском Союзе подобный закон собираются принять в 2010 году. Но знайте - системы по контролю над давлением и температурой в шинах, предлагаемые нашей фирмой, превосходят подобные системы, штатно встраиваемые в наиболее полные комплектации дорогих иномарок. Штатные системы большинства автомобилей показывают лишь непосредственно наличие проблемы. Они не отражают оперативной обстановки, часто показывая лишь давление в одном "проблемном" колесе и "забывая" о постоянном контроле над температурой, что очень важно для ходовой части.

 

Датчики давления и температуры в шинах помогут вам:

  • Не допустить взрыва колеса автомобиля во время движения.

  • Обеспечить контроль над давлением и температурой внутри шин во время движения.

  • Повысить управляемость Вашего автомобиля.

  • Обнаружить возможные неполадки в тормозной системе.

  • Обеспечить контроль возможной регулировки развала-схождения.

  • Обнаружить перегрев колеса от воздействия солнечных лучей во время стоянки.

КРУИЗ-КОНТРОЛИ.

Круиз-контроль (ранее был известен под маркетинговыми названиями англ. Cruise control, нем. Tempomat) — устройство, поддерживающее постоянную скорость автомобиля, автоматически прибавляя ее при ее снижении и уменьшая при ее увеличении к примеру, на спусках, без участия водителя.

Удобен в дальних дорогах, когда трудно удерживать на большом протяжении времени педаль газа в одном и том же положении.

Устанавливается как на автомобили с автоматической коробкой передач, так и на автомобили с механикой.

Получил наибольшее распространение в США, что логично учитывая количество длинных автомагистралей, соединяющий пригороды мегаполисов.

ACC

Адаптивный круиз-контроль (ACC, Adaptive Cruise Control) также следит за расстоянием до впереди идущего автомобиля и следует за ним на заданном удалении в режиме «сопровождения» при условии, что заданная скорость автомобиля с ACC выше скорости впереди идущего автомобиля. При необходимости ACC включает тормозную подсистему.

В некоторых ACC также присутствует система предотвращения скатывания автомобиля на подъеме HLA (Hill Launch Assist).

АСС зависит от систем безопасности автомобиля ABS и ESP. Если любая из них неисправна АСС выключается (предупреждающий сигнал, на дисплее: АСС cancel отключена).

Конечно же, ACC не заменяет водителя. Бывают ситуации, когда ACC может неправильно определить наличие впереди идущего автомобиля, например, когда впереди идущий автомобиль лишь частично перекрывает полосу движения автомобиля с ACC. Поэтому водитель всегда должен внимательно следить за дорогой.

АВТОСИГНАЛИЗАЦИИ

Условно автомобильные охранные системы можно разделить на «пассивные» и «активные». Определение «пассивные» применимо к обычным автомобильным сигнализациям. «Пассивная» автомобильная сигнализация при попытке угона или взлома подает звуковой или световой сигнал, поступающий на брелок-коммуникатор, либо блокирует двигатель. Даже если в данный момент вы будете находиться в непосредственной близости от места происшествия, защищать автомобиль Вам придется собственными силами. Всю ситуацию контролируете Вы сами, автомобильная сигнализация, работающая пассивно,  не смогут подать сигнал группе быстрого реагирования, а также определить координаты местонахождения автомобиля (если преступнику удалось обмануть систему защиты).


 

Двухсторонняя автосигнализация (Two Way Alarm System) - это охранный комплекс, позволяющий пользователю на значительном расстоянии контролировать состояние системы, выполнять различные сервисные функции и настраивать параметры, посредством "пейджерного брелока". На брелоке отображается вся необходимая информация, поступающая от автомобиля, находящегося под охраной двухсторонней сигнализации и существует возможность дистанционного управления (В настоящее время на расстояниях до нескольких километров) параметрами охраны и поведения охраняемого объекта.

 

 

 

 

 

 

Система «меток»

 

Модификации BLACK BUG SUPER


84 серия


85 серия

 

Элитный сервис

BLACK BUG SUPER работает по принципу "свой-чужой". Интеллектуальная система узнает хозяина машины по электронной метке. Для управления комплексом никаких действий не требуется. Нужно лишь иметь при себе метку.

Все очень просто. Вы подходите к своей машине. Она узнает Вас, после чего отключает сигнализацию и открывает двери. При снятии с охраны система может установить на привычный для Вас уровень сиденье, рулевую колонку, зеркала, а также выполнить другие заданные настройки. При включении зажигания система вновь проверяет наличие хозяина в машине. Если все в порядке, то система отключает электронные блокировки двигателя и разрешает отправиться в дорогу.

После поездки Вам не придется каждый раз поднимать стекла, закрывать двери и люк, включать блокировки двигателя и сигнализацию. BLACK BUG SUPER все сделает автоматически, как только Вы выключите зажигание и отойдете от автомобиля на пару шагов.

В систему записаны три метки, благодаря чему машиной могут пользоваться три человека. Для каждого пользователя могут применяться индивидуальные настройки. А они, благодаря богатым сервисным возможностям комплекса BLACK BUG SUPER, могут быть самыми разнообразными.

Водитель может посылать в машину различные команды по телефону: произвести запуск двигателя или заглушить его, включить кондиционер, открыть или закрыть двери и многое другое.

Три рубежа защиты

Охранно-противоугонные комплексы BLACK BUG SUPER имеют три рубежа защиты. Первый рубеж – сигнализация, оповещающая владельца о вторжении в автомобиль или попытке угона. В режиме охраны BLACK BUG SUPER контролирует двери, капот, багажник, замок зажигания, стояночный тормоз, рычаг коробки переключения передач, педаль тормоза, датчики сигнализации, а также охраняемую зону на подступах к машине. При попытке угона или кражи из автомобиля включаться световая и звуковая сигнализация. При желании систему можно настроить на скрытное оповещение, когда сигналы тревоги передаются только на автопейджер и мобильный телефон владельца, а также на пульт дежурного вневедомственной охраны.

Второй рубеж – это защита от угона и захвата. Элитные комплексы вобрали в себя все передовые технологии, применяемые в элитных противоугонных системах – WAIT UP и HOOK-UP.

Элитный комплекс подстрахует от угона автомобиля даже в том случае, если владелец беспечно оставит ключи в замке зажигания. В подобных ситуациях BLACK BUG SUPER автоматически производит идентификацию автовладельца. Если система не обнаружит хозяина, то работа двигателя будет заблокирована. Для включения противоразбойного режима владельцу ничего делать не нужно. BLACK BUG SUPER все делает сам.

От электронного взлома с помощью сканеров и кодграбберов элитный комплекс BLACK BUG SUPER надежно защищен технологией DID.

Третий рубеж защиты предусмотрен на тот случай, если злоумышленники завладели автомобилем разбойным путем, высадив хозяина из машины, предварительно лишив его метки, ключей и брелока. В этом случае автовладелец может заблокировать работу двигателя по телефону, не подвергая себя опасности непосредственного контакта с преступниками. Получив сигнал на блокировку двигателя, машина плавно остановится

 

 

Что такое ТЕХНОБЛОК (Tecnoblock)?

Система Техноблок (TECNOBLOCK) - принципиально отличается от традиционных систем охраны автомобиля, обеспечивает на порядок более эффективную защиту, используя оригинальный и универсальный подход к методам защиты любых транспортных средств. Механическая блокировка функционирует всегда, не зависимо от наличия питания в бортовой сети. Любое вмешательство в конструкцию гидравлического контура приводит к его разгерметизации и следовательно к невозможности использования автомобиля.

 

 

Как работает система Техноблок (Tecnoblock)?

        Система Техноблок (Tecnoblock Italia) - это механическая противоугонная система, которая предназначена для защиты от угона любых механических транспортных средств, таких как: легковых, полноприводных, грузовых автомобилей, а также строительной спецтехники на колёсно-гусеничном ходу.
    Система Техноблок не влияет на работу электроники и механических узлов. Для блокирования движения транспортного средства система взаимодействует на гидравлические или пневматические контуры тормозов и сцепления транспортного средства. Устройство, которое осуществляет блокировку контура(ов), размещается в автомобиле достаточно скрытно. Постановка на охрану автомобиля и снятие с охраны производится запирающим механизмом. В салоне автомобиля расположена замковая личинка. Поворотом оригинального ключа Техноблок водитель блокирует/разблокирует гидравлические или пневматические контуры автомобиля. Блокировка осуществляется механическим обратным клапаном, профессионально установленным в разрыв соответствующего контура. Замковая личинка системы Техноблок изготавливается в Швейцарии, сейфовая степень секретности которой составляет 268 700 000 000 комбинаций, а корпус устройства Техноблок максимально усилен и обеспечивает защиту от проворачивания и высверливания личинки даже специальным инструментом.

Спутниковые сигнализации.

Спутниковая: автомобильная сигнализация, спутниковая противоугонная система, спутниковые поисковые системы, спутниковый мониторинг транспорта (автотранспорта).

Современные спутниковые противоугонные системы (проще говоря, спутниковые автомобильные сигнализации) борются с угонщиками активно. При попытке несанкционированного проникновения в автомобиль спутниковая авто сигнализация посылает тревожный сигнал на диспетчерский пульт охраны. На место происшествия выезжает группа быстрого реагирования. Ситуация контролируется в режиме реального времени. Если имеет место разбойное нападение, спутниковая автомобильная сигнализация автоматически распознает ситуацию, исключая владельца из процесса противодействия угону.

Охранные системы позволяют надежно защитить легковой автомобиль, грузовой автотранспорт, строительную и другую спецтехнику, но требуют постоянной абонентской платы.